\rightarrow conercte is prodeciced by mixing cement, coactive aggregate fire aggregate (scend) \& vector mired in a definite proportion.

Fuss concrete is cen easily conruable plastic mixture $\&$ it flows easily so that it can be placed in a previously made formaierk to cast beam. slab, colsemn ot aery other clesimable shape.
\rightarrow When reinforcing stead is placed in the forme before fresh concrete \& placed in the forms before fresh concrete is placed ancund it, the final solidified mos becomes the reinforced concrete.

Advantages of ecencriset?

Following are the advoentexges of reinforced concrete -

- Ot has a vary high compressive strength. The strength of concrete can be increased on decreased by using suitable proportion of ingestients.
\rightarrow St is free from corrasion \& weathering effect.
\rightarrow I acts as a good fierce proofing material.
\rightarrow The structure made out of reinforced concrete are very rigid \& have a low maintenconee cost.
\rightarrow It has a very log service life inasilise an in. : \rightarrow
Disadvantages of reinforced concrete
Following are the disadvantages of reinforced concrete -i.
 Hersite sires.
\rightarrow - rt requires the form work to be kept fere many days. The case of formucorte varies from $30-40 \%$ of the total cost.
\rightarrow At u not completely impervious.
It shiciriks and sets up shrinkage stresses
Unit weight
For the purpose of design \& estimate of loading, the unit weight of plait coverete with reinforced concrete with Lend \& gravel or crushed natural stone aggregate moly be taken as -

$$
\begin{aligned}
& \text { Plain concrete }-24 \mathrm{kN} / \mathrm{m}^{3} \\
& \text { ritinfored concrete }-25 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

Loceds on eftrenticice
\rightarrow In general the loads on sirudure ane elcissified as vortical on gravity loceds, horizontal loads \& Longitudinal loceds.
\rightarrow The vertical loads are further classified, as dead, lecce, Livt-load thus IB Impact loced.
\rightarrow The horizontal loads ane classitid as wind load \& earthquake load.

The longitudinal loads are considered in some special cases.
\rightarrow Land loess cere the toads due to self coeight of the structure or structural members.
\rightarrow The dead loads ane static loads \& remain constant throughout the life of the sfructerne.
\rightarrow egg. - loads due to partition coal, flooring, roofs, fats
2. Live loced
\rightarrow These are the lo ads which are not steady. Unlike the dead load they change their magnitude.

- e.g- moving Loads ca, like persons, can etc cent ales movable load ute furniture

3. Impact Load
\rightarrow These are the Locods caused by vi e.g -moving crane.

- There is a difference l between a person walking and a soldier marching. The person produces a live lowed, while the soldier produces an impact coed.
- When tire load cause impact, it is urial in static analyse is to increase the live inced by some' perientagel depending on the
type of impact.

4. Wind Load These are the lateral loceds depend on the velocity of wirx -'In different parts of the country, the velocity of wind can be -1
different oft different places.
5. Earthquake blood
\Rightarrow These artie the horzzenfal voids caved by earthquake.
\rightarrow The coventry is divided into 4 zine namely zone II, zone, TI, zone TV $\&$ zone v idecoriding to priobable intensity of
\rightarrow The earthquake forces on the stricture' shall be calculated in accordance with IS: 1893-2002

6. Longitudinal Loads

\rightarrow These ceric clued by sudden, stopping of moving. Loads.
\rightarrow A moving cricrie, moving truck etc. when abruptly stopped
cause longitudinal loads.

Properties of reinforcing material

For any material to be, wed as reinforcement for concrete, it should possess the following properties:

1. It should possess high tensile strength.
2. It should be able to develop a ged bond with concrete.
3. It should posses a high modulus of elasticity
4. It should have same (or neatly some) temperature coefficient of expansion and contraction as concrete to avoid the developement of thermal stress.
10
5. Ot should be easily available.

Types of reinforcement

Tho different types of reinforcement used are:-

1. Mild steel
2. Medium tensile stent
3. Hot rolled deformed bans
4. High yield strength deformed (HYSD) boers

5. Hand drawn steel wire fabiui wold twisted deformed (CTA) bans
6. Thermpomechanieally treated

* Note 4

CTM(T) bars in:
Encl cases the modulus of elasticity of steel shall be
$E_{6}=200 \mathrm{kN} / \mathrm{mm}^{2} \mathrm{E} \cdot 2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

 Grade of Concrete

\rightarrow Generally 6 grades of concrete of re lied for co Rcciocrus ie

- The neember in the grade designation, refers to the characteniste
strength of concrete io a 15 cm cube in 28 days. \& gen, grally expressed ass $\mathrm{N} / \mathrm{mm}^{2}$ " and " M 'stands for mon' \& the eharateteristic Compressive strength is dented by feck ;
Tour Here, M stands form mix and

Modulan Ratio (m)

Modular ratio is the ratio of Young's modulus of elasticit, of two materials in consfruction by composite material.

In RCC work the mokerials are genenally taken as concrete \& siecl.

Ot is denoled by ' m '.
$m=\frac{\text { Young's modules of elasticity of stech }}{\text { Voceng's modectes of ecasficity of concrete }}=\frac{280}{3 \text { Fcbe }}$

Grade	Ecbc	m
M_{15}	$5 \mathrm{~N} / \mathrm{mm}^{2}$	18.66
M_{20}	$7 \mathrm{~N} / \mathrm{mm}^{2}$	13.33
M_{25}	$8.5 \mathrm{~N} / \mathrm{mm}^{2}$	10.98

pernissible strusses :- In ucurring stress method, the stresses in mationiols are not oxceded beyend their percmisible values. The permissibic sineses are found by lesing suitable. focters of safoty to the matoriat's sinergith. Q.g:- Fer cercrute in exppretion in bending, a feactor of safety oqual ts 3 is considened on etrancactarcisfic strungth of ernerate and a factor of arfely equat to 1.8 is censidered on the yistd sfrength of mild सiecl reinfertement in tension due to berding.

Pormissible strueses is conerute

Modular Retio (cm)
The modecter ratio m of siecl and cencrute is defined as $m=\frac{\text { modulus of elasticity of sled }}{\text { modules of elasficity of corercte }}=\frac{280}{3 \sigma \mathrm{cbc}}=\frac{E_{S}}{F_{c}}$

* Modelees of clasticity of conrerete (E$)=5000 \sqrt{\text { fek }}$

Ast, bal $=$ Reirferted anco provided fert betcenced section.
Febe $=$ permissible stress in conereste in comprestion zone
Ost $=$ permissible strult in slect in tension zone.
$E_{e}=$ Moctults of slaticits of conerda
$E_{s}=$ Modulues of elatricity of siece.
$\epsilon_{c}=$ sfracein in conerete
$\epsilon_{A L}=$ glraein in sleel.
$b=$ width of team
$d=$ effective depth of bear o
$0=$ overate depth of brier
$m=$ matulart ratio $=E_{S} / I_{\mathrm{Ec}}$
$x_{\text {bal }}=$ Eph of Na i.e the dist ane from oxtrume position of filter,
$z=$ Lever arm ie the defiance between centroid of compressive force to the contused of tensile force.

* To find $N A$

On sfrutio dicegrater, $\triangle M N O$ \& $\triangle O D Q$ are simitar t $\triangle, 20$ $\frac{x_{b a l}}{d-x_{b a l}}=\frac{\sigma_{c b c} / E_{c}}{\sigma_{b t} / E_{s}}$
$\Rightarrow \frac{x_{\text {bal }}}{d-x_{b a l}}=\frac{\sigma_{\mathrm{b} b c} \times E_{s}}{\sigma_{s t} \times E_{c}}$
$\Rightarrow \frac{x_{\text {hal }}}{d-x_{\text {bal }}}=m \times \frac{\sigma_{\text {F be }}}{\sigma_{\mathrm{bl}}}$
$\Rightarrow \quad x_{\text {bal }} \sigma_{s t}=\operatorname{mocbc}\left(d-x_{b a l}\right)$
$\Rightarrow x_{\text {bal }} r_{s t}=$ mocbe $d-$ mocbe $\times x$ bal
$\Rightarrow \quad x_{\text {bal }}$ cost $\left.+m \sigma_{c b c}\right)=m_{\text {che }} d$
$\Rightarrow \quad x_{\text {leal }}=\left(\frac{\text { m家 }}{\sigma_{s t}+m \sigma_{c b c}}\right) d$
$\Rightarrow \quad x_{\text {bal }}=k d \quad(\because k=$ constant $)$
$K=\frac{\text { mach }}{\sigma_{s t}+m \sigma_{c h c}}$
$\Rightarrow k=\frac{\text { moves } / m \sigma_{c b c}}{\sigma_{s t} / m m_{b c}+m \sigma_{c b c} / m \sigma_{c b c}}$
$\Rightarrow K=\frac{1}{1+\frac{\sigma_{s t}}{\text { macc }}}$ \square

Note
fore mild steed ; $\sigma_{3}=140 \mathrm{~N} / \mathrm{cm}^{2}, k=0.9$.
fort fe $415, \quad \sigma t=230 \mathrm{~N}_{\mathrm{mm}^{2}}, k=0.29$

* To find len arm
$z=d-x_{\text {bal }} / 3$
$\Rightarrow z=d-k d / 3$
$\Rightarrow z=d(1-k / 3)$
$\Rightarrow z=d j$
$j=1-k / 3$ - I ever arm croviant
* To find tetar forces

$$
\begin{aligned}
& \text { comprestive fores (c) = compe sfresus } x \text { ancra } \\
& =\text { Wcbe } \times V /{ }^{2} \times b^{2} x b a l \\
& \Rightarrow c=\phi_{y s o} \frac{b x b a t \text { 化bt }}{2}
\end{aligned}
$$

Total tension $(T)=-$ Sheresix Aeca

$$
\Rightarrow T=\sigma_{s t} \times \text { Ast,bal }
$$

* To find moment of rescitanes of the section

As it is a balanece section, thenee comp. \& tens. fonce witl be equal
**

$$
\begin{aligned}
& M R=\text { comp fores } \times \text { lewen arm } \\
& \Rightarrow M R:\{1 / 2 \times b \times \operatorname{sebc} \times x b a i \times j d \\
& \Rightarrow M R=1 / 2 \times b \times \sigma e b t \times k / 8 j d \text { is } \\
& \Rightarrow M I R=1 / 2 \times \text { Scbe } \times k j \times b d^{2} \\
& \Rightarrow M R=\text { Qbal } \times \mathrm{bd}^{2}=\text { Mbal (cmpl) }
\end{aligned}
$$

** $M R=$ tens. force x leven arm

$$
\begin{array}{ll}
& M R=\operatorname{ten} s, \text { force } \times \text {.ast } \times \text { Asf, bal } \times \text { Jd } \\
\Rightarrow & M R=\text { tens) }
\end{array}
$$

* To find steel arica

For a balaneod enction

$$
\begin{aligned}
& \text { Mbal }=\text { Ast, bai } \times \sigma \text { ol } \times j d \\
& \Rightarrow \text { AsL bas }=\frac{M \text { bal }}{68 t \text { jd }} \\
& P_{1, \operatorname{lin}=}=\frac{\text { Ast.bal }}{b d} \times 100 \\
& \text { i) Ptilin }=\frac{\text { Vlbal }}{\sigma s t j \mathrm{bd}^{2}} \times 100 \\
& =\frac{V_{2} \times \sigma_{c} b c \times k \times j b d^{2}}{\sigma s t j b d^{2}} \times 100 \\
& =\frac{1 / 2 \sigma c h k}{\sigma s t} \times 100 \\
& \Rightarrow \mathrm{P}_{\mathrm{tim}}=\frac{50 \sigma_{c} \mathrm{bt} \mathrm{~K}}{\sigma_{s t}}
\end{aligned}
$$

4) To design balanued section

$$
\begin{aligned}
& M=M \text { bal }=Q_{\text {bal }} \times \text { bd }^{2} \\
& \Rightarrow \sqrt{\frac{M \text { bat }}{Q \text { bal } \times b}}
\end{aligned}
$$

\rightarrow A transformed arete is a area in wevien the steel area is replaced by an equivalent concrete are. The transformed ariz section may bo of stead when cenencte is repleiced by aptest or if may bo of concrete when the fest area is replaced by concrete.

In fig. the actual concrete is tension zone is absent becatell. We have assumed that concrete carry y tensile force. Thee all tensile forte witt be carried by stent
\rightarrow Let $f_{c t} \& f^{\prime} c b$ be the strellies in steed and concrete respoctivaly at the level of centricid of steel.

Struein in concrete $=$ strain in steal
$\Rightarrow \frac{f^{\prime} c b}{E_{c}}=\frac{f_{s t}}{E_{s}}$
$\Rightarrow \quad \mathcal{J}^{\prime} s t \quad f^{\prime} c b \times \frac{E_{c}}{E_{c}}$
$\Rightarrow \quad f_{s f}=m f^{\prime} c b$
\therefore Now force in steel $=m^{\prime} c b \times$ Ass, bat
If the steel is replaced by an equivatent-concrete area, the equivalentconcrete will carry the lame force.
\therefore Now thu force in equivalent concrete $=\begin{gathered}\text { transformed } \times \mathcal{f}^{\prime} \mathrm{Cb} \\ \text { area }\end{gathered}$
Equating (1) \&(2), we get
tran formed chorea $\times f^{\prime} c b=m f^{\prime} c b \times 4$ st, bal
\Rightarrow transformed area $=m .4 s t, b a l$

* TO find $N A$

As the theory of simple bending can be applets, the neutral axis is the centroidal ais of the transformed section. To determine the cesitrevidice ovid, the moment t of composite area mary be taken about cony selected axis. eg. top of the section. Then the formula $\bar{x}=\Sigma A x$ $\bar{y}=\frac{\sum A y}{\Sigma A}$ can be applied. In present cate, it is easier to take $\overline{\bar{A}}$ moments of transformed area clout $N A$ itself. Hence $\bar{C}=0$

Thes,

$$
\begin{aligned}
\bar{A} & =\frac{\sum A x}{\sum A}=0 \\
& \Rightarrow \frac{A_{1} x_{1}+A_{2} x_{2}}{A_{1}+A_{2}}=0 \\
& \Rightarrow \frac{b \cdot x \cdot x_{2}+m A c 1\{-(c l-x)\}}{A_{1}+A_{2}}=0 \\
& \Rightarrow \frac{b x^{2}}{2}-m A s t(d-x)=0 \\
& \left.\Rightarrow \frac{b x^{2}}{2}=m A c \right\rvert\,(d-x)
\end{aligned}
$$

* Strees in conercele
from shrain diagham, $\frac{\hat{f}_{c b} / E_{c}}{f_{s} / E_{s}}=\frac{x}{d-x}$

$$
\begin{aligned}
& \Rightarrow \quad f c b=\frac{f_{s f}}{E_{d} / E c} \times \frac{x}{d-x} \\
& \Rightarrow \quad f_{c b}=\frac{f(b t}{m} \times \frac{x}{d-x}
\end{aligned}
$$

* sfrees in atceel

$$
\text { fst }=\frac{M}{4 s t(d-x / 3)} \quad\binom{\text { whene, }}{d-x / 3=z}
$$

* Mement of AESISTAMCE
* MR of comprestion side/cencrete

$$
M R=\sigma_{c} b c \cdot \frac{b x}{2}, z
$$

* MR of tencion side 1 steel

$$
M R=\sigma_{s f} \cdot A S t \cdot z
$$

Nole :- Whichever ísmaller will be the moment of regisfante of the section. Numerical!
Type. 1 (TO Find the depth of NA \& specify type of beam)
Step-1:- If the saction and actual prosses cere given of the matericati. fintact depth of NA using eah.

$$
x=k d \text { whore, } K=\frac{1}{1+\frac{\sqrt{3 f}}{m f_{0} b}}
$$

* If the section \& stect crea care previded. Fenct ocet depth of NA by taking moments of breansformed aruce about NA.

$$
\text { b. } x \cdot x / 2=m \cdot \operatorname{Alt}(d-x)
$$

وlep-2:- firdoct the depth of NA fert balanead lection, also uncion as depth of critical NA uking eqn.

$$
x=k d \text { Whene, } k=\frac{1}{1+\frac{\sigma_{s}}{m \sigma_{c k c}}}
$$

Step-3

1. $x_{\text {aciuct }}<x_{\text {critical }}$; under-reinforteed section
2. $x_{\text {actual }}=x_{\text {critical }}$; Balanced section
3. $x_{\text {actual }}>x_{\text {critical }}$; oven-reinforted section.
Q. A Rec beam 250 mm wide $\times 520 \mathrm{~mm}$ effective depth is reinforced with 3 nos of 16 mm diameter bars. Findout the type depth of NA \& type of boom. The material are $M 20$ grade of concrete \& wHys reinforcement of grade to Lis.

Pollution:- Data Given,

$b=250 \mathrm{~mm}$
$d=520 \mathrm{mv}$

$$
f_{k}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
st $=3 \times \pi / 4^{\times(16)^{2}}$

$$
=603 \mathrm{~mm}^{2}
$$

Set x be the depth of Neectral axis.
Taking moments of transformed area about neutral axis.
$\Rightarrow \begin{aligned} & b \cdot x \cdot x / 2=m 43 t(d-x) \\ & 250 \times \frac{x^{2}}{2}=13.33 \times \operatorname{co3}(502-x)\end{aligned}\left[\begin{array}{l}\because m \text { for } M 20 \text { grade } \\ \text { of corctote }=13.33\end{array}\right]$
$\Rightarrow 125 x^{2}=4035070.98-8037.99 x$
$\Rightarrow 125 x^{2}+8037.99 x-4035070.98=0$
$\Rightarrow \quad x^{2}+64.3 x-29280.56=0$
$\Rightarrow x=150 \mathrm{~mm}$
Depth of cintical $\mathrm{NA}=\mathrm{ok}$.
$=0.29 \times 520$
$=1.50 \mathrm{~mm}$
\therefore ArD - $x_{\text {actual }}=x_{\text {critical }}$
\therefore Here, the beam is balanced.
(\#)

Type-2 (To findout MR of a given section)

Step-1:- If the section \& actual stresses in the materials are given. Finch out depth of NA using, given eq.

$$
x=k d \text { where, } k=\frac{1}{1+\frac{1}{m} t c^{b}}
$$

If the section \& steel area are provided, fendout NA by using following eq.

$$
b \cdot x \cdot x / 2=m A s t(d-x)
$$

Step-2:- findout depth of $N A$ for balanced section, depth of erictical $N A$ by using ea l
where,

Blep-3:- 1. $x_{\text {actual }}<x_{\text {crítical }}$; tendert-ruinforeud
2. $x_{\text {ceteal }}=x_{\text {ertical }} ;$ Betseneed
3. $x_{\text {chateal }}>x_{\text {eritical; }}$ over-reinfortesp
step-4:- Then findocet MR.

1. If $U A \sec ^{\circ}$ (Xactual < xerikeal)
$M R=A \operatorname{lol} \cdot \sigma_{s f} \cdot(d-x / 3)$
2. If $O R-\sec ^{n}$ (xactial $>$ xeniticat)

$$
M R=1 / 2 \sigma_{e} b \cdot \cdot b \cdot x(d-x / 3)
$$

Q. A RCC beam 300 mm wide $\times 550 \mathrm{~mm}$ effeciive depto is recinforced with $^{\text {ith }}$ 48 nes of 16 mm diametor barus in tention. The materials are $\mathrm{M}_{20} \mathrm{~g} x$ rede of conerate \& HYSD batu of grade Fe LIIS. The parenissible sfrestes in boonsizes conorecte in bexding compression and steal in tersion are $5.6 \mathrm{~N} / \mathrm{mm}^{2}$ \& $210 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. findoul the MR of the sectitn.
Bclution:- Given.
$b=800 \mathrm{~mm}$
$d=550 \mathrm{~mm}$
Ast $=4 \times \pi / 4 \times(06)^{2}$
$=804 \mathrm{~mm}^{2}$
$\sigma_{S t}=210 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{CbC}}=5.6 \mathrm{~N} / \mathrm{mm}^{2}$
$m=\frac{280}{3 \pi c b c}$

$=\frac{280}{8 \times 5.6}$
$=16.66$
xacteal
b. $x \cdot x_{1 / 2}=$ mAst $\left(d-x_{12}\right)$
$\Rightarrow 300 \times x^{2} / 2=16.66 \times 904(5.50-x)$
$\Rightarrow 150 x^{2}=7867052-13994.64 x$
$\Rightarrow 150 x^{2}+18304.04 x-7367052$
$\Rightarrow x_{\text {actual }}=198.4 \mathrm{~mm}$
critial depth of NH (Xercitical)

$$
\begin{aligned}
X_{\text {eritical }} & =\mathrm{Kd} \\
& =0.30 \times 550 \\
& =165 \mathrm{~mm}
\end{aligned}
$$

Here, xatuat $>$ xerticat ; O-R sectien
$M R=\frac{1}{2} \times$ Tcbe $\times b . \times \times(d-x / a)$
$=\frac{1}{2} \times 5.6 \times 900 \times 181.4\left(550-\frac{181.4}{3}\right)$
$=74593131.2 \mathrm{~N}-\mathrm{man}^{2}$
. 74.59 kNM , (H)

Methods of Design,

IS: 456 , permits 8 methods of delign. They cere: y its

1. Limit stave method
1.2to in id: 1korking stress method
2. Ultimeele locked method
3. Limit state Method
\rightarrow The acceptable l imit for the safely \& serviceability requirement before failure occurs is known as limit state:
\rightarrow In this method of design, the sireucture is designed to withstand safely, all loads, liable to act on it, froughocet ifs lifer . $121 \rightarrow$
\rightarrow The structure also lasso be checked for the serviceability requirements such as imitations on deflection anat cracpeing. \rightarrow -
\rightarrow of may be noted that the concept of limit state cenalysis is not \because Ir applicable to \& brittle material. conercte is ios bristle material however teinforcedos concrete passes some ductility dele to presences of reinforcing stet, so yinif state method eat therefore applied to RCC sirecterme.

r. Limit state of Collapse

This limit slate refers to, the siriength of the sfreveture. A sinueture or 'it's parts should be strong enough to resist the cepplied design load. This is called imit stacte of collapse. :
ic. $\frac{\text { Limit state of serviceability }}{\text { in }}$
This limit slate is infrodeced to prevent deflection \& cracking.
I. Deflection:- Ausorsos Excessive deflection that can reduce the efficiency of the siructuruemest be cuvoided.

II Cracking:- \rightarrow concrete structures have cracks. However if the width of cracks ark e Larger, the appearance of the shevetune
will be affected. Also water \& gat frem atmospiore, can cause ruesting of reinforcement.
\rightarrow fer oormal conerite sfructure the seenface crack coidth of 0.2 mm it ciecepterble.

Objectives of clecign R detaicing of a structerte
The objectives of dictigning \& detcriting of a siructurs are:-

1. Beercebelity
2. Senviccability.

Modulus of elcusticity of concrete

$$
E_{c}=5000 \sqrt{\mathrm{fck}}
$$

Flexural strengft

$$
\text { fen }=0.7 \sqrt{f c k}
$$

Q. find the medulus of slattietty 2 flerunat sirength of M_{20} grade of concrecte:
Sot :- Given

$$
f_{e k}=20 \mathrm{~N} / \mathrm{mn}^{2}, i
$$

$$
\begin{aligned}
& E_{c}=5000 \sqrt{f c k}=5000 \times \sqrt{20}=22.360 .68 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{c r}=0.7 \sqrt{f_{c k}}=0.7 \times \sqrt{20}=8.1304 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Servies Load (Axial load)
Serwien loceds cre the actual loceds that the sfructerne uite be subjected which are nel factorwed.
Desctar/oocti
Fretored Load
The loced subjected bo by meltiplying a chanaetenistce lecud by an appropriate partial safeciy ferctor's is knoten cus ferctoried loced. Parteal Socféty factór

$$
\text { Stect }=145
$$

Conctede $=1.5$
 ferctored leerd?

$$
\begin{aligned}
\text { fecotored Locill } & =\text { Service Locud } \times 1.5 \\
& =200 \times 1.5 \\
& =300 \mathrm{kN}
\end{aligned}
$$

Aecumptions in linit state clevign
following are the assumptions made in limit state.

1. Plane sections normel to the axis rematin after bending, This astumption means thet sfrain at any pecinf on the crusis-section is difictly preportioncel to its diviance from nectival axis.
a. The maximem straits in the concrete cet the cutermost-cenpressins febre is taken at 0.0035 in bendeng.

2. The struss siratin diagram of concrute is parabolic from strain value of zere tw 0.002 \& corruspending sfruss value of xero to fex. The struss now remains consfant \& siroxin inerease to 0.0035 as shown in feg. Since the concrete it a brittle material, the compresive strengfi of concrute shall be taven as 0.67 fck . Then applying the pantioel papelty facter for material. $\gamma_{m}=1.5$, the detign flexurel strungth of conercte shate be $\frac{0.67 \mathrm{fck}}{1.5}=0.446 \mathrm{fck}$
3. The Hensile sfrain of concrete is ignorred.
4. The moximum strain in the tersile reinforcement in the section at ferivere shale seof be lest theen

$$
\frac{f y}{1.15 \mathrm{Es}}+0.002
$$

二. . $+\cdots$
 Strees sinain curuse of concrete

$d=$ effective deptb
de = elear covere
$x_{u}=$ neretral axis constant

In sitrain curve $\quad \triangle O P Q \& \triangle O$ arte simitar tricangles. So,

In struss curve the area. of , $A B C D$ rectangle is $0.446 \mathrm{fck} \times x_{p}$

$$
\begin{aligned}
& =0.446 \mathrm{fck} \times 9 / 4 x u \\
& =0.1911 \mathrm{fck}_{1} x_{u} .
\end{aligned}
$$

Arua of DCE parabole $=2 / 3 \times 0.446 \mathrm{fck} \times 4 / 7 \mathrm{xu} .7$ * Nole

$$
\begin{aligned}
& =0.169 \mathrm{fcu}_{\mathrm{cu}} \\
& \approx 0.17 \mathrm{fcu} x_{u}
\end{aligned}
$$

Now, ': i \& ? - secticea of

$$
\begin{aligned}
& =0.19 \mathrm{fek} \mathrm{xer}_{1}+0.17 \mathrm{fek} \mathrm{xum} \\
& =0.36 \mathrm{fen} x_{\mathrm{u}} .
\end{aligned}
$$

Location of comprussive fortce from the extrume edge
(where the total compressive Afonce $=$ total area $=0.36 \mathrm{fcu} x_{u} \times b\binom{$ ursit length }{ i.e $d=1}$

$$
\begin{aligned}
& \bar{x}=\frac{Z A x_{1}}{\Sigma A} \\
\Rightarrow & \bar{x}=\frac{a_{1} x_{1}+a_{2} x_{2}}{a_{1}+a_{2}}
\end{aligned}
$$

$\vartheta \frac{1}{x}=0.9 \mathrm{fich}^{\left(x_{1}\right)} \times\left(x_{2} / 2\right)+0.17 \mathrm{fek} x_{4}\left(x_{2}+3 / 8 x_{1}\right)$

\Rightarrow

$$
\bar{x}=0.416 x u^{\prime}
$$

33

1. $\begin{aligned} \dot{A} & =a b / 3 \\ \bar{x} & =b / 4\end{aligned}$
2. $A=2 / 3 a b ; \bar{x}=b / 4$
```
\[
\Rightarrow 1 \quad \therefore 3-\cdots+1230
\]
```


T. Tensitis struss. \qquad

Tensits stress $=0.87 \mathrm{fy}$
Tensite force $=$ stres \times Area of stece

$$
=0.81 \mathrm{fy} \mathrm{Ast}
$$

Now equating the compresive force to tersiele ferce, we get Compressive force $=$ tensite fence
$\Rightarrow 0.36 \mathrm{fcu} \mathrm{xech}^{\mathrm{b}}=0.87 \mathrm{fy} \mathrm{4st}$
7) $x_{\text {un }}=\frac{0.87 \mathrm{fy} \text { ASE }}{0.36 \text { fek } \mathrm{b}}$

* $f_{y}=$ characieristic sirength of steel
$f_{c k}=$ characteristic strangth of concrute

Limiting vatue of strain of sfece

1. for mild steal
we know,

$$
\text { strain } \epsilon_{u s}=\frac{f y}{1.15 \mathrm{E}_{S}}+0.002
$$ So,

$$
\epsilon_{u s}=\frac{250}{1.15 \times 2 \times 10^{5}}+0.002
$$

Simiting vatue of Numax

- 1 for mildsteel
$\triangle O R S$ \& $\triangle M N O$ are similart triangles So,

$$
\text { for mild steel }- \text { fy }=250 \mathrm{Nmm}^{2}
$$

$$
\frac{0.0035}{x_{u} \text { max }}=\frac{0.003 c 8}{d-x_{u} \max }
$$

$\Rightarrow x_{u}$ max $=\frac{0.0035}{0.00308}\left(d-x_{u} \max \right)$
$\Rightarrow x_{\text {ut }}$ max $=1.13$ (d-oxumax)

$\Rightarrow x_{u}$ max $=0.531 \mathrm{~d}$
2. For Pe-415; fy' $=415 \mathrm{~N} / \mathrm{mm}^{2}$
Eus

$$
\Rightarrow \text { EUs }=0.00280
$$

2. for fe 415 1am>1 1×4 bt com
1) $\frac{0.0025}{x_{u} \max }=\frac{0.00380}{d-x_{\mu} \max }$
$\Rightarrow x^{\prime} \operatorname{lamax}^{\prime}=\frac{0.0035}{0.00390}$ (d-nuemax)
3. for $f_{e}-500, f y=500 \mathrm{~N} / \mathrm{mm}^{2}, 20, \mathrm{~N}$
$\Rightarrow x_{u}$ max $_{515} 8.929$ - 0.92 keumas 311 Eus $=\frac{500}{1.15 \times 2 \times 10^{5}}+0.002$

$$
\Rightarrow \text { EUS }=0.00417
$$

3. forfe-500

$$
\frac{0.0035}{24 \text { max }}=\frac{0.00417}{9_{1} \text { xut max }}
$$

* | Type of steel | strocin value |
| :--- | :--- |
| f_{0} fy $=200 \mathrm{~N} / \mathrm{m}^{3}$ | 0.00308 |
| for $f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$ | 0.00380 |
| $f_{0 \text { or }} f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$ | 0.00417 |

if xuer max $_{1}=\frac{0.0035}{0.00417}$ (d-xesititar)

* Xumar is the max mippth of NA at fetifuri condncet wasies concrete
* Tyype of Steef $|c| c |$| $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$ | 0.5310 max |
| :--- | :--- |
| $f_{y}=45 \mathrm{~N} / \mathrm{mm}^{2}$ | 0.479 d |
| $f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}$ | 0.456 d | is) rtaches to a was mo sfrowis of 0.0035 . At this condn stecl will be in plaste! zone. with conten uesus yislding. ore

deformation.

* Mulin is tha moment resisfance of brlaneed secn.

Classification of Beams:- The beams are classified as:-

1. Singly reinforced \& Doubly resinferted beams
2. Rectangular \& flanged beams.
3. Singly recinfoneed beam:- Wee know that the reinforcement tisprovided in -tension zone writs in compression zone ceserete revise the applied force. If the concrete is strong sough to resist the applied bending in compression then sech booms arse called singly resinfereed beam.

$d=$ effective depth
$D=$ overall depth
4. Dectbly reinforced beano:- If the concrete in compression zone is unable to withstand all the compression applied to it, it is reinforced is compresion zone also. When a beans is additionally reinforced in compression zone then it is called doubly reinforced beam.

Rectangular on
3. Flanged beam:- The crose-section of a beam may have flanged i. 'T'shape.

Effective coven:- It is defined as the minimum distance between the surface of concrete to the gestiose of the reinforcement. It is alesa-calted as the clean cover.
Effective Depth :- It a defined ar the distance fromiextreme compiresion fibre to the contruatif the tensile reinforcement. It is denoted by ' d '.

Overall Depth

Overall depth $(D)=$ Effective depth + bar radius + , effective cover
Ex:- Let the effective depth 4550 mm and 22 mm dicmeliz of sficil is used.
find the overall e depth.?
Sol?:- Assume, efrictione dept $=20 \mathrm{~mm}$

$$
d=500 \mathrm{~mm}
$$

$$
\pi=d / 2=22 / 2=110^{m} m_{12} 1
$$

\therefore overate depth $+D=500+11+20=531 \mathrm{~mm}$...(*)

Simiting value of percentage of steel
we knew,

$$
\begin{aligned}
& x_{\text {temax }}=\frac{0.8 \neq f_{y} \text { Ast }}{0.36 \text { fte } b} \\
& >\frac{x_{u m} \max }{{ }_{11} d}=\frac{0.87 \mathrm{fyAst}}{0.36 \mathrm{fek} \mathrm{bol}} \\
& \Rightarrow \quad \frac{\lambda_{\text {st }}}{b d}: \frac{0.36 \mathrm{fcu} \text { xumast }}{0.67 \mathrm{fy} d} \\
& \Rightarrow \frac{A S t}{b d} \times 100=0.414\left(f\left(u / A_{y}\right)\left(\frac{2 u \max }{d}\right) \times 100\right. \\
& \text { Pt limit } \left.=\frac{A s t}{b d} \times 100\right] \quad P_{t}=50\left[\frac{1-\sqrt{1-\frac{4.6 M u}{f e k b d^{2}}}}{\therefore \text { fŷ/fck }}\right]
\end{aligned}
$$

Pt limit

$f_{c x}$	$f_{y}=250$	$f_{y}=415$	$f_{y}=500$
$M-15$	1.32	0.72	110.57
$M-20$	1.76	0.96	0.76
$M-25$	2.20	1.19	0.94

Type pf socigeg Depending upory the mode of failurfe of a beam, 3/tupes of \rightarrow undpr ferinfurced/section possiblertiney ane-
\rightarrow undpr ferin furced/section
Balapued section
over reinforted section
Moment of Resistance
It is the marimuen permiseible moment restited by the bearo when it is subjected to an extirnal force.

Types of section
Dxpending upon the mode of failure of a beam, 3 types of sectiont are possible. they arce -
vit 1. Under reinforiced section'
a. Balaneed section
B. Overt reinforted section.

1. Under reinforiced spction
i. oi is the section on uriich $x u<x u m a x$

ii. $P_{t}<P_{t}$ limet
iv. Here in the lin it of collape strain in sheel is not mose than il fy/1.5Es +0.000 \& sfress in Meal a takencer $0.87-\mathrm{fy}$:
v. $M_{u}=0.87 \mathrm{fy} A \mathrm{As}^{\prime}\left(\mathrm{d}-0.416 x_{u}\right)$,
is. Balanced section
i. $x_{u}=x_{u}$ max
ii. $P_{1}=P t$ Limit
iii. Mu: Mumax
iv. The maximetm stress in concrete is 0.046 fee
v. The maximum strain in concute it 0.0036.
vi.
$M u=0.36$ fer Nut b (di- $0.416 x u)$
2. Over-ricinforced section
i. $x u>$ pumas
ii. $\mathrm{Pt}>\mathrm{Pt}$ Limits
iii Mu > Mu mes x
iv. But this type of beam in avoided for the design purpose because the beam may crack without givtsg: prion warning \& it dangerous

Mulimit for various Grader of Steel
Mulimet $=0.0 .36 \mathrm{fen}$ xu max $b(d-0.46$ nu max $)$
21215 , $1, \ldots=0.36$ fix xumax bod $\left(1-0.416 \frac{\text { xumay }}{d}\right)$

$$
=0.36 \mathrm{fek} \frac{x u m a x}{d} \times b d \times d \quad\left(1-0.416 \frac{x u m a x}{d}\right)
$$

for mild steel
$f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$
Mulimit $=0.36\left(\frac{0.531 d}{d}\right)\left(1-0.416 \times \frac{0.531 \mathrm{~d}}{d}\right) \mathrm{fek} \mathrm{bd}^{2}$
\Rightarrow
Mulimit : 0.149 fere belt ${ }^{2}$
for $\mathrm{fe}-415$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Mulimit $=0.36\left(\frac{0.479 d}{a}\right)\left(1-0.416 \times \frac{0.4790}{d}\right) \mathrm{fckbcl}^{2}$

$$
\Rightarrow
$$

Mutimit $=0.138+\mathrm{fekbc}^{2}$
$\frac{\text { for } f e-500}{f_{y}=500 \mathrm{~N} / \mathrm{mm}^{2}}$
Mulimit $=0.36\left(\frac{0.456 d}{9}\right)\left(1-0.416 \times \frac{0.456 \mathrm{~d}}{9}\right) \mathrm{fex} \mathrm{bd}^{2}$
\Rightarrow Mulimit $=0.133 \mathrm{fen}$ bel

Limiting moment of reistance factor Qlim $\mathrm{N} / \mathrm{mm}^{3}$ for singly reinforced Pectangular section.

$f_{c k}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$f_{y}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$						500	550
15	250	415	2.00	1.94				
20	2.96	2.76	2.66	2.58				
25	3.70	3.45	3.33	3.33				
30	4.44	4.14	3.99	9.87				

Types of problems in singey risioforiced beam
Type-1 To fendout the depib of nertral axis \& specify the type of beam steps

1. find 4st
2. find x_{u} from $x_{u}=\frac{0.87 \mathrm{fysst}^{\prime}}{0.36 \mathrm{fer} b}=$ Nopth of neictrai cexis'
III. Find xu max using limiting value of $\frac{\text { rumax }}{d}$
iv. If $x_{u}<x_{u \text { mas }}$; under-reinforced
$x_{u}=x_{u}$; Balancid
$x_{u}>$ xumax; over-reinforced
ore

- find Percentage of reeinforcement $\left(P_{t}\right)$ \& shall be coropcored wift P_{t} un If $P_{t}<P_{t}$ lim ; unders-reenforteed.
$P_{t}=P_{t} \mathrm{lim} ;$ Batanced
$P_{t}>P_{t}$ lim; overt-rieinforced

Problem

Q. A rectangular beam 230 mm wide \& 520 mm effective depth is reinforced with 4005 of 16 mm die bars. Findout the depth of reectral avis and specify the type of beam. The materials one No groxele of concrete \& HYSD reinforcement of grouse ins if 415. Also findout the depth of reuthat cenis if the reinforcement is increased to 4 oss . of 80 nT tia bert.
Sols:- Case -li; :

$$
\text { Ass: }=4 \times \pi / M^{4} \times(16)^{2}=804 \mathrm{~mm}^{2}
$$

depth of neutral axis $=x_{u}=\frac{0.87 \mathrm{fy} \mathrm{Ast}}{0.36 \mathrm{fek} \mathrm{b}}=\frac{0.87 \times 415 \times 804}{0.36 \times 20 \times 230}=175.3 \mathrm{~mm}$
Limiting value of $=x_{u}$ max $=0.479 \mathrm{~d}=0.479 \times 520=249 \mathrm{~mm}$ neutral axis
\therefore Here, $x u<$ xumsex, hence the section is under-reinfonced.

Dst $^{\text {st }}=4 \times \pi / 4^{*}(20)^{2}=1256.6 \mathrm{~mm}^{2}$

Depth of neutral axis $=\pi_{\text {cu }}=\frac{0.87 \mathrm{fy} A \mathrm{At}}{0.36 \mathrm{fek}^{2}}=\frac{0.87 \times 415 \times 1256.6}{0.36 \times 20 \times 230}=274 \mathrm{~mm}$
Unit value of neutral axis $=x_{\text {mar }}=0.4 \neq 9 \mathrm{~d}=0.479 \times 520=249 \mathrm{~mm}$
\therefore Hence, $x_{u}>$ pumas ; hence the section is over reinforced.

Type-2 (To findout moment of resistance for a given, section)
Steps

1. Find out the depth of NA \& the type of beam
2. For under reinforced \& balanced section, obtain $M R$ by using eq.

II. Fort overt-ruinforced section, obtain MR by using eq. Mullion $=$ Qum bol ${ }^{2}$
Muslim $=0.36 \frac{\text { xumax }}{d}\left(1-0.416 \frac{\text { xumax }}{d}\right)$ fork bd ${ }^{2}$
Q. A singly reinforced rectangular beam of width $230 \mathrm{~mm} \& 460 \mathrm{~mm}$ depth is reinforced with 3 nos 20 mm dea bars. Findout the factored moment of resistance of the section. The materials are M_{20} grade of concrete \& HYSb reinforcement of grade fe 415. Also findoct the factored moment of resistance if it is reinforced orth 5 nos. of 20 mm dea beers.

Soluction:-
Qata Given,

$$
b=230 \mathrm{~mm}
$$

$$
d=460 \mathrm{~mm}
$$

$\therefore \mathrm{fex}^{2}=20 \mathrm{~N} / \mathrm{mm}^{2}$
Casi-1

ASt $=3 \times \pi / 4 \times(2 x)^{2}=942 \mathrm{~mm}^{2}$
$x_{u}=\frac{0.89 \text { fy } A \text { st }}{0.36 \text { fer } b}=\frac{0.87 \times 415 \times 942}{0.36 \times 20 \times 230}=205.4 \mathrm{~mm}$

$$
\text { Tumax }=0.479 \mathrm{~d}=0.479 \times 460=220.3 \mathrm{~mm}
$$

$\because x_{u_{i}}<x_{u m m a x}$, hence if is an under-reinfonced rection.

$$
M_{u}=0.87 \text { fy Ast }(d-0.416 \mathrm{xu}) .
$$

$\therefore 0.87$ कि $\times 415 \times 942(460-0.416 \times 205.4)$, 10.187) $=127389087.8 \mathrm{Nmm}$

$$
\therefore 127,38 \mathrm{kN}-\mathrm{M}
$$

Case-2

Ast $=5 \times \pi / 4 \times(90)^{2}=1571 \mathrm{~mm}^{2}$
$x_{u}=\frac{0.87 \mathrm{fy} 4 \mathrm{st}}{0.36 \mathrm{fu} \mathrm{b}}$

$$
\begin{aligned}
& =\frac{0.87 \times 415 \times 1571}{0.36 \times 20 \times 230} \\
& =342.5 \mathrm{~mm}
\end{aligned}
$$

Xumax $=0.479 \mathrm{~d}=0.479 \times 460=220.3 \mathrm{~mm}$ $\therefore x_{u}>$ xumar, hence it 4 an

2
 over-reinforced section.
$M u=0.36 \frac{\text { xumax }}{d}\left(1-0.466 \frac{\text { xumax }}{d}\right) f u k d^{2}$

$$
=0.36 \times \frac{0.4799}{d}\left(1-0.416 \frac{0.4799}{d}\right) \times 20 \times 230 \times(460)^{2} .
$$

$$
=134400493.5 \mathrm{~N}-\mathrm{mm}
$$

rex
\square

$$
=184.4 \mathrm{KNM}
$$ 184.4 KNM

Type-3 (To design a singly reinforced rectangular section for a given width \& applied factered moment).

1. The width is usually decided by the functional ruquiruments. To decide the depth. first deleremine the belanerel depth.

$$
d_{\text {bol }}=\sqrt{\frac{M u}{Q(\operatorname{cin} \times b}}
$$

U'ibut:
Nell
If the balcenced area is found with this depth, difficulty wit arise while providing the reinforreemonts. Selecting exact remember of reinforcement with available diameter is hardily passible. We carnot provide lessart area. of we provide larger area, the section becomes over-reinfonced. Therefore under--reinforced section should be followed by using larger depth then balanced ossa.
2. The following procedure may be adopted as one of the auternsetives fer depths unto 1000 mm to arrive a practical solution.
i. Assume 5% larger effective depth fore $d \leqslant 500 \mathrm{~mm}$ (case-1) \& 10% larger depth for $1000 \mathrm{~mm} \geqslant d \geqslant 500 \mathrm{~mm}$ (cas e-2).
ii. Assume 1 layer of 20 mm diameters bans for (case-1) \& two layers of 20 mm diameter bars for (cese-9)
(iii. If the clear cover to maineson reinforcement is 90 mm effective cover $=80+10=40 \mathrm{~mm}$ for case -1 (assume 1 Rayen of 20 mm 中)
$=40+20=60 \mathrm{~mm}$ for case -2 (assume 2 leyden of 20 जाm d) iv. The overall depth can be obtained as $D_{\text {overall }}=d+40 \mathrm{~mm}$ for care -1 $=d+60 \mathrm{~mm}$ tor case -2
v. The value thus obtained shall be roiended unto nearest 25 mm . vi. Now, $d=D-40 \mathrm{~mm}$ case-1
$d=D-60 \mathrm{~mm}$ cale-2
vii. Determine $\frac{M u}{b d^{2}}, P_{t}$ \& Ass using edp of P_{t} at pen the cask of under-reinforcermons section. Also determine Ass, tim
viii) Select the bart size \& number such that Alt $<$ Astr rime
Q. Design a singly reinforced rectangular beam for an applied factored moment- of 120 kNM . Resume the width of the section as 230 mm . The materials are Mos grade of concrete. \& HYSD reinforcement of grade Fells. Solution:- Data given.
$M u=120 \mathrm{kNM}$
$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{3}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$.
$b=230 \mathrm{~mm}$
$\left.\begin{array}{l}\text { Quin }=9.76 \\ \text { Pt, bol }=0.96\end{array}\right\} \begin{aligned} & \text { check the } \\ & \text { table \& IS 456 }\end{aligned}$

Balansed depth, $d=\sqrt{\frac{M u}{Q u m \times b}}=\sqrt{\frac{120 \times 10^{6}}{2.76 \times 230}}=434.8 \mathrm{~mm}$
Inereacie the depth by 5% and ald 40 mm effective coven.
$D=1.05 \times 434.8+40=496.5 \mathrm{~mm}$
Rounding up ' D ' to nearess mieltiple of $25 \mathrm{~mm}=500 \mathrm{~mm}=D$ $D=500 \mathrm{~mm}$. (Assuming one lagere of 20 mm dia boris)
141) $\alpha=500-30$ (evere)-10 (upfó

$$
\begin{aligned}
d & =D-c \cdot C-\phi / 2 \\
& =500-30-20 / 2 \\
& =460 \mathrm{~mm}
\end{aligned}
$$

$$
\left[\begin{array}{rl}
\because c \cdot c & =c l e a r c o v e n \\
\phi & =\text { diamefen of bon }
\end{array}\right]
$$

$P_{t}=50\left[\frac{1-\sqrt{1-\frac{4.6 \mathrm{Mu}}{\sec b d^{2}}}}{\frac{f y / f c k}{c}}\right]$

$$
=50\left[\begin{array}{l}
1-\sqrt{1-\frac{4.6 \times 120 \times 10^{6}}{20 \times 200 \times\left(460^{2}\right.}} \\
415 / 20
\end{array}\right]
$$

$$
=0.824
$$

1. Agt requirsd $=\frac{P t \times b \times d}{100}=\frac{0.834 \times 230 \times 46 \mathrm{D}}{100}=871.792 \mathrm{~mm}^{2} \sim .872 \mathrm{~mm}$

At, Le $=\frac{(\dot{p}, \text { bal } \times b \times d}{100}=\frac{0.96 \times 230 \times 460}{100}=1015.68 \mathrm{~mm}^{\circ} \simeq 1016 \mathrm{~mm}^{2}$
Ast, provided = Poswiden Assuming, 9 nes of 20 mm dia bars

$$
\begin{aligned}
& =3 \times \pi / 4 \times(20)^{2} \\
& =942 \mathrm{mo}^{2}
\end{aligned}
$$

\therefore Thece Ast, Requined <Ast, provided, \langle Asf, lim, Finally we have $b \times D=230 \mathrm{~mm} \times 500 \mathrm{~mm} \quad \therefore$ (H)

Type-4 (To find the Heel arrea for a given factored moment)

Steps.

1. Fort a giver utrimate moment (alv known ces factered noment) \& assumed width of lection, findout ' 1 ' from the eq?

$$
d=\sqrt{\frac{M u}{\sin \times b}}
$$

- This is a balaned siction a balaneld stest ctrea mary be focindout using the fotlowing ean

$$
\mathrm{mu}=0.87 \mathrm{fy} \mathrm{Ast}(d-0.416 \mathrm{xu})
$$

Allercoatively plivim nxay be cblain frean lable.
2. Fore a given factortad moment, wheth \& deptb of seckion

Mutém = Qxim bcl

9f.

1. Mu< Mutem ; design at $4-R$ suctern
2. Mu $=$ Mutem; atsign al butoonead section

1, $\mathrm{Mu}>$ Nuetim : rucdesign the sec cithwe incricasing the dimonsitess of section ore delign as drubly-reenferteed boam.
Fort U-R section, the sicel arisa can be oblacion by using equation

Q. A rectangulan singly reinfenced beam is subjected- L a bonding momerit of $\$ 6 \mathrm{kMm}$ at working teads. The ceidth of the beam it 200 mm . To0 Find the depth \& siect ariea for batanced design. The materielts Mzo griade of conerete and mild steel reinforeement.

Soustion:- Eacia Given,
$b=900 \mathrm{~mm}$
$M u=1.5 \times 36$
$=54 \mathrm{kNM}$
त $=54 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
$f_{\text {ek }}=20 \mathrm{~N} / \mathrm{mm}^{2}$
埐 $=250 \mathrm{~N} / \mathrm{mm}^{\circ}$
Qein $=2.96$
$d=\sqrt{\frac{M u}{Q u m \times b}}$
$=\sqrt{\frac{54 \times 10^{6}}{2.96 \times 200}}$
$=302 \mathrm{~mm}$
$\mathrm{Mu}=0.87$ fy Ast $(d-0.416 \times u)$
$\Rightarrow 54 \times 10^{h}=0.87 \times 950 \times$ Ast $($ dु02-0.416 $\times 0.531) \quad\left(\because \frac{x y}{d}=\frac{\text { xumiax }}{d}=0.531 d\right)$
$\Rightarrow 54 \times 10^{6}=5175$ Ast
$\Rightarrow \quad$ Aet $=1055 \mathrm{~mm}^{2}$
Assuming 20 mm dia bars arie lesed.
No. of beers $=\frac{\text { Ast }}{\frac{\pi}{4} \times(\phi)^{2}}$

$$
\begin{align*}
& =\frac{1005}{\frac{\pi}{4} \times(20)^{2}} \\
& =8.35 \mathrm{nos} \\
& \simeq 4 \mathrm{nos} . \tag{H1}
\end{align*}
$$

Qoubly Peinforced Becems

If the appied memont is greater than the M.R of a singly reinferied section, thene cen be 3 deternctives.
(1) If possible, increase the dimensitos of the section, preferabley depth. (a) Higher greede conctects can be cusd to incerease the: M.R of the
(3) Sectem

\rightarrow A doubly reinfereed beam section, strain \& stress diagram are shown in fig. A doubly reinforiced biam subjected to a moment Mu can be Qxprussed as a rectangulara section with temsion reieforcement (Asf, lim) reinforceof for balanceg condition giving moment of resistance (Mu, ime)t en auxitiany section reinfored wim comprastion reifforcement (Asc) \& tensile reeinfencement (4 st 2) giving a moment of resisfanse Mu 2 sueh that.

$$
M u=M u . l i m^{+} M_{u s} .
$$

\rightarrow Fir the monent Mulin the tension sisel Ast, itim ti-foundout as oxplaind for sirgly reinfared waams. Fere the aditional moment Mu2 tue additional iension steel and comprestion stul are provided suen that they give a couple of moment mus.
\rightarrow Let the compreysion reeiffercement be provided af a depth " $d^{\prime \prime}$ " frem the extremen conprevian fibre. Then leven arm for codeditional moment will be "d-d'".

\rightarrow Considencing comprestion sfeel

$$
M_{u 2}=A s c\left(f_{s e}-f_{\mathrm{cc}}\right)\left(d-d^{\prime}\right)
$$

Now,

$$
\Rightarrow
$$

$$
A s I_{2}=\frac{\operatorname{Asc}\left(f_{s c}-f_{c s}\right)}{0.87 f_{y}}
$$

\rightarrow rotal tensile rienforcement

$$
\text { Ast }=\text { Ass.lim }+\mathrm{Asis}_{2}
$$

\rightarrow WD know.
Toter cemprestion $=$ Total tension
$\Rightarrow 9^{\circ} c_{1}+c_{2}=T$
$\Rightarrow 0.36 f_{c k} x_{t c} b+$ Asch $\left(f_{s c}-f e c\right)=0.87 f_{y}$ Hst using the formeria findout rue.

$$
\begin{aligned}
& f_{c c}=0.446 \mathrm{feck}^{\prime} \\
& f_{s c}=d^{\prime} / d .
\end{aligned}
$$

fy $\left(N / \mathrm{mm}^{2}\right)$	d			
	0.05	0.10	0.15	0.20
250	217	217	217	217
415	355	353	242	329
500	424	412	395	370
550	458	441	419	380

Types of Problems
Type - (To findret the MR of a given section) greps

1. Find met we from eq.

$$
\left(0.36 f_{c k} x_{e r e} b\right)+A s c\left(f_{r e}-f_{c c}\right)=0.81 f_{y} \text { Asp }
$$

2. Find Yumas \& type of bean.
3. Find out $M R$ from

$$
\begin{aligned}
& \text { Find out } M R \text { from } \\
& M R=0.36 \mathrm{fuc} x_{u t} b\left(d-0.416 x_{u}\right)+\text { Ase }\left(\mathrm{fsc}-\mathrm{fec}^{\prime}\right)(d-\mathrm{cl}) \\
& M R=0.87 \mathrm{fy} \text { Ass } Z
\end{aligned}
$$

gre
Note:- If it's an over-ruinforced section, then we pumas instead of xu.
Q. Find the fectorud moment of resistance of a becem section $230 \mathrm{~mm} \times 460 \mathrm{~mm}$ effective depth reinforced with $2-16 \mathrm{~mm}$ dial boars as expression reinforcement ot an effective covert of 40 mm and $4-20 \mathrm{~mm}$ dianelert bats as tension retoffercoment. The materials cere. M20 grade of conende \& meld steel.
Solution:- Data Given.

$$
\begin{aligned}
b & =230 \mathrm{~mm} \\
d & =460 \mathrm{~mm} \\
d^{\prime} & =40 \mathrm{mro} \\
\text { fek } & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =250 \mathrm{~N} / \mathrm{mn}^{2} \\
\text { Asc } & =2 \times \pi / M^{\times(16)^{2}}=402 \mathrm{~mm}^{2} \\
\text { AsA } & =4 \times \pi / 4 \times(20)^{2}=1256 \mathrm{~mm}^{2} \\
\text { If } c=d^{\prime} / d & =40 / 460=217 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

$f_{c c}=0.446 f_{e x}=8 / 42 \mathrm{~N} / \mathrm{mo}^{2}$ (as the value it very Less to nageceting)

We know,

$\Rightarrow 0.36 \times 20 \times 211 \times 230+402 \times 217=0.67 \times 250 \times 1256$
$2 u=\frac{0.87 \times 250 \times 1256-402 \times 214}{0.36 \times 20 \times 230}$
$\Rightarrow x_{u}=112.29 \mathrm{~mm}$
Dumas $=0.531 \mathrm{~d}$
\Rightarrow sumac $=0.521 \times 460$
$\Rightarrow x_{\text {max }}=244.26 \mathrm{~mm}$
$\therefore x_{u t}<x_{u m a x}$; beret the section is under-rceinforced.
$M R=0.87$ fy Hst $\times z$
$=0.87$ fy fAst (d-0.416 xn)
$=0.87 \times 250 \times 1256(460-0.416 \times 112.29)$
$=112901841 \mathrm{~N}-\mathrm{mm}$
$=112.90 \mathrm{kNM}$
(H)

Type -2 (To find out reinforcement for flexure for a given section and
factored moment) steps

1. Findout Muslim and Asti, lin for a given section by using the exp.

$$
\text { Muslim }=\text { Qum } b d^{2}
$$

2. obtain moment $M_{12}=M u-M u, l_{i m}$
3. Find cemprustion steel from equation

- $A s c=\frac{M_{42}}{f_{b c}\left(d-d^{1}\right)}$

4. Corresponding tension steel fAst a may be found out from

Hst s $=\frac{\text { Ae }{ }^{5} \mathrm{sec}}{0.87 \mathrm{fy}}$
5. Ass $=$ Asti, in o +Mst 2
6. Provide reínfarcemene.
7. Find $x_{e t}$, xumax type of beams and MR foil designed section.
Q. A reectangulan beam of sixe $230 \mathrm{~mm} \times 500 \mathrm{~mm}$ offectivo diepth is subjectod to a factored moment of 200 kum . Find the recinforecempnt fou flesures. The matorials are M20 grade of encmete and HySD recinfernement of grade pe Lis.
Suluction:- Rata given,
$b=280 \mathrm{~mm}$
$d=50 \mathrm{~mm}$
$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{Mu}=200 \mathrm{kNM}$
$=200 \times 10^{6} \mathrm{~N}-\mathrm{mm}$

Mustem $=$ Clem bd^{2}

$$
=2.76 \times 230 \times(500)^{2}
$$

$=158700000 \mathrm{~N}-\mathrm{mm}$
$=158.7 \mathrm{KNM}$
Mu2 $=200-158.7=41.3$ KNM
Nst the compression reinforicement be provieled at cen effective cover of 50 rn . $d^{\prime} / d^{\prime}=50 / 500=0.1$
$\therefore f_{6 c}=353 \mathrm{~N} / \mathrm{mm}^{2}$

Teumax $=0.4 \neq 9 d_{1}$,

$$
=.239 .5 \mathrm{~mm}
$$

$A S C=\frac{M L_{2}}{f_{s c}\left(d-d^{1}\right)}=\frac{41 \cdot 3 \times 10^{6}}{353(500-50)}=260 \mathrm{~mm}^{5}$
Ast $9=\frac{\text { Asc fse }}{0.87 f_{y}}=\frac{260 \times 353}{0.87 \times 415}=254 \mathrm{~mm}^{2}$.
Ast $=$ Asf, Lin + Ast2 $=1098+254=1352 \mathrm{~mm}^{2}$
froviding 20 mm dia bars
No. of bars@comp.zone $=\frac{260}{\pi / 4 \times 20^{2}}=0.80 \simeq 2 n 0 s$
No. \& bors @ ters. zone $=\frac{1352}{\frac{\pi}{4} \times 20^{2}}=4.80$ N, 5nos
Asf, provided $=5 \times \frac{\pi}{4} \times 80^{2}=1570 \mathrm{~mm}^{2}$
Ase, provided $=2 \times \pi / 4 \times 20^{2}=62 s \mathrm{~mm}^{2}$
$x_{u s}=\frac{0.87 \mathrm{fyAsf}-\mathrm{Asc}\left(\mathrm{fsc}_{\mathrm{se}}\right)}{0.36 \times \mathrm{f}_{\mathrm{ck}} \times b}=\frac{0.81 \times 415 \times 1570-628 \times 353}{0.36 \times 20 \times 830}=208 \mathrm{~mm}$
$\therefore x u<$ xumax ; lience U-R sec?.
$M R=0.87 \mathrm{fy}$ Ast (d. $0.0116 \times \mathrm{cc})$

$$
\begin{aligned}
& =0.87 \times 415 \times 1570(500-0.416 \times 208) \\
& =284375983 \mathrm{~N}-\mathrm{mm} \\
& =234.37 \mathrm{KNH},
\end{aligned}
$$

Chapter - 4
Shear, Bond and Development
Shear stress ((cv)
The distribution of shear in reinforced concrete rectangular $T \& L$-beams of ceniform and varying depths depends on the distribution of the normal serest.

(i) Actual distribution
(ii) Average distribution
(c) Rectangul or beam

Design che af strength of reinforced Concrete: -
The shear strength $\left(\tau_{1}\right)$ depends on the grade of concrete and the percentage one tension steel in beams. On the other hand, the sheer stivengith of reinctoraed cmarete with the reinforcement is restricted tosome noxem value τ_{c} max depending on the grad of concrete.

Minimum shear Que io forcement
Minimum shear relinforcenent has to be Provided when τ_{v} is less then τ_{c} given in $40: 3$ of is. 45.6.
The minimum shear reinforcement in the form of stirrups shalt be, provided.

$$
\frac{A s v v^{b s v} \geqslant \frac{0: 4}{0+\gamma+f i \gamma}}{b_{s-1}}
$$

Where As v = total cross: sectional area . of stirrup
$S_{v}=$ stirrup spacing along the tengtin of member.
$b=$ breadth of the beam
fy = charact eristic strength of the sfiricel reinforcement in Neman which shall not be taken greater than Hus Nim 2

Design of shear Reinforcement $\left(\begin{array}{ccc}C 1 & -40,4 & \text { of } \\ \text { Is } 456\end{array}\right)$
When τ_{v} is more τ_{c} given in shear reinforcement shall be provided in any of (a) vertical stirrup
(b) Bent-urkars along with stixicues.
(c) Inclined stirrups.

$$
v_{u s}=v_{u}-\tau_{b}
$$

(a) vertical strauss.

$$
V_{\text {aces }}=\frac{0.87 f_{y} \text { Ass } d}{\delta v}
$$

(b) for inclined stirrups

$$
v_{u s}=\frac{0.87 \text { fynsv } \alpha}{s v}(\sin \alpha+\cos \alpha)
$$

(e) for single bar or single group of parallel boas

$$
\text { vus }=0.8 \mathrm{ffy} \mathrm{fSv} \text { d } \sin \alpha
$$

Where $A S V=$ total cross-sectional area of chirrup leas
$S V=$ spacing of stirrup
$\tau_{V}=$ nominal shear stress
$\tau_{c}=$ design shear strength.

$$
b=\text { width }
$$

$f_{y}=$ characteristic strength of the $\alpha=$ stirrup esplective.

$$
\alpha=\text { angle, } d=1 \text { effective }
$$

Bond
The bond between steel and concrete is very important and essential so that they can act together without any flip in a loaded structure. with. the perfect bond bet them, the plane section of a beam remains plane even after bending: The lenepth of a member required to develop the full bond is called anchorage length. The bond is measured by bond stress.

(Development length of bar)
tensile force $T=\left(\pi \phi^{2} \sigma_{s} / 4\right)$
Where Φ is the nominal diameter of the bar $\sigma_{s}=$ tensile stress

$$
\begin{aligned}
\tau_{b d} & =\text { resistance force } \\
L_{d} & =\text { length } \\
\text { resistance force } & =\pi \phi L_{d}\left(\tau_{b d}\right) \\
& =\pi q^{2} \sigma_{s} 14
\end{aligned}
$$

$$
L d=\frac{\phi \sigma_{s}}{4 \tau_{b_{0} d}}
$$

$$
f_{d}=0.87 f y
$$

Probicm-L
A reinforced convrete bean is supported on two walls 250 mm thick, spaced out a. clear distance of 6 m . The bean corries a super -imposed load of $9-x+x / m$.. design using M_{2} o concrete and Hysober,
for fich15 side $f_{S}=0.258 \times 415=240 \mathrm{~N} / \mathrm{mm}^{2}$.
HAs: $1 \% d=20 \times 1=\varphi d=1 / 20=6000 / 20$
Overil glepts $\quad=300$

$$
=400+25+8+0.5 \times 20=443 \mathrm{~mm}
$$

Assume $b=250 \mathrm{mn}$ $\approx 450 \mathrm{~mm}$
Load Calculation

$$
\begin{aligned}
D L & =0.25 \times 0.45 \times 1 \times 25=2581 \mathrm{kk} / \mathrm{m} \\
L L & =9.8 \mathrm{kN} / \mathrm{m} \\
\text { total Load } & =2.81+9.8=12.61 \mathrm{kN} / \mathrm{m} \\
W_{u} & =1.5 \times W=18.91 \mathrm{kN} / \mathrm{m} \\
\text { effective span } & =(6+0.25 / 2+0.2 \mathrm{r} / \mathrm{m}) \\
& =6.25 \mathrm{~m}
\end{aligned}
$$

Calculation of 3 m

$$
\begin{aligned}
& 8 M=\frac{W_{M^{2}}}{8}=\frac{18.91 \times 6.25}{8}=92.31 \text {.until } \mathrm{m} \\
& \text { Map SF }=\frac{W_{M H}}{2}=59.12 \mathrm{KN}
\end{aligned}
$$

$$
\begin{aligned}
\text { Mu: } & 0.13 \gamma f c k b d^{2} \\
d & =\sqrt{\frac{92.37 \times 1 \delta^{6}}{0.138 \cdot \times 20 \times 2 s 0}}=365.89
\end{aligned}
$$

depta: hoznm
development Lencify

$$
\begin{aligned}
& \text { Ld }=\frac{\phi \sigma_{s}}{4 \mathrm{c}_{\mathrm{bq}} \times 1.6}=\frac{20 \times 0.87 \times 4 s^{2}}{4 \times 1.2 \times 16} \\
&=940.23 \mathrm{~mm}
\end{aligned}
$$

Flanged Beams
Definition
It's simply a rectangular beam cast monotethically with the star shaped as ' T '.

A "tee beam or et t beam" can be considered as a rectangular boom." with dimensions $b \omega \times D$ plus a flcuge of site (b y-bw) $\times D f$ '. This is indicated in fig.

Advantages
The various advantages of T- beam are as follows:-

1. Since the beam is cast monolitnically with the slab, the flange also takes se, the compressive stresses which means, it writs be more effective. in resisting the sagging moment acting on the beam.
2. Better head room, this is diesel outcome of the first point since the clepth of the beam can be convidencobly reduced :
3. For larger spans, t-beams are usually preferred rather thin rectangular besom as the deflection is reduced to a, good extent. a
Discedvantages
The various disadvantages of T-beam ane ai follow:-
4. Thence is considerably increase in the shear stress of tho junction of the flange end the web of the beam due to the charenge on acoss-section. So casting should be done very carrefilley to ensure beth cure bonded well.
5. Bine the beam slab is monolitiec cricgid), it becomes very weak io resisting tetiercal shear forces, cracks duviop quievly. Hence usually in earthquake prone' zones using t-beams for high rise becilding, is reinforced with mechanical stifffretes, in the function.
6. There will be small savings in, feel too c not a significant amocent though).
Position of Neutral Axis
For a flanged bacon, the necetrial axis esther ion, lies in flange or : 1
(b) lis in web. for a given section, to decuple whether the neutral cexis ives in flange or web', the florine force and the total tension may be compered as explained below.

As a first approximation, ut us assume that the neutral axis lies at the bottom of flange.

Now, total compress ion.

$$
\left.\begin{array}{l}
w, \text { total compression. } \quad\{\text { total tension } \\
\mathrm{fte}_{\mathrm{te}}=0.36 \mathrm{feks} \Delta f \mathrm{Df}
\end{array}\right\} \text { fits } 20.87 \mathrm{fj} 1 \mathrm{st}
$$

..Then:, If ftc> FeEs : NA lies in flange
2. If fie $=f t s$; $N A$ lies at the bottom of the flange.
3. If fie < Ais ; whir in the curb

Then.

1. $x u<x$ cLimax ; the section is under-reinfiried
2. $x_{u}=$ xumcox ; the section ls bcelanced
3. $x u>$ xumax; the section is over-reenforied

Derciviation
Neutral axis lies in flange $\left(x u<D_{f}\right)$
$b_{f}=$ width of flange
bu. width of curb
$D f=$ Depth of f leange
$d=$ effective depth
$D=$ overall depth
Asp $=$ Area of steel
de = clear corer

When the neutral cexis lies in the flange, the size of the compression becomes bf $\times X_{e r}$. As concrete does not resist any tension, the width of tension zone has no effect on the M.R. of the section. therefore. this beam can be throughout of as a rectangular beam of dimensions bf $x d$. The formulae derived for rectangular beams shale be applied. They are summarised below.

Let,
Mu, lm $T^{\prime}=$ moment resisting capacity of a flanged beam:.

* For a singly reén forced flanged beam
i. Equating total compression \& total tension

$$
x_{u c}=\frac{0.87 \mathrm{fy} \mathrm{Ast}^{2}}{0.36 \mathrm{fek} \mathrm{bf}}
$$

ii. for under-reinforced section

$$
\begin{aligned}
& M_{u}=0.8 f^{\circ} \mathrm{fy} \mathrm{Ast}^{\mathrm{Ast}}(d-0.416 \mathrm{mu}) \\
& M_{u}=0.36 \mathrm{fcu}_{\mathrm{cu}} \mathrm{xu}\left(d-0.416 x_{\mathrm{u}}\right)
\end{aligned}
$$

iii. For balanced or oven reinforced section

$$
\begin{aligned}
& \text { Muslim } T=0.36 \mathrm{fck} \text { bf xumax (d-0.416 yumas) } \\
& \text { Mu, lin } T=0.87 \text { Fy Asti, him }(d-0.416 \text { xumaxi) }
\end{aligned}
$$

\&

A tee beam of effective fleange wicth 1200 mm , theikness of slab 100 m with of rib 4 nos. of 25 mm and epprective depth of 560 mm facterred moment of restisfonce. The materials che M20 grade of concrute. and HySs reinfercemont of grade fells.
$b_{f}=1200 \mathrm{~mm}$
$D_{f}=100 \mathrm{~mm}$

1. $h_{\mu}=800 \mathrm{~mm}$
$d=560 \mathrm{~mm}$
$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Ast $=4 \times \pi / 4 \times(25)^{2}$

$r=1964 \mathrm{~mm}^{2}$
To find the position of $N A$. compare \&lange compression and tensile force.
$F_{t c}=0.36$ fck bf Δf

$$
\begin{aligned}
& =0.26 \times 20 \times 1200 \times 100 \\
& =864000 \mathrm{~N} \\
& =864 \mathrm{kN}
\end{aligned}
$$

$f_{t s}=0.87 f y \mathrm{Ast}$

$$
\begin{aligned}
& =0.87 \times 415 \times 1964 \\
& =709102.2 \mathrm{~N} \\
& =709.1 \mathrm{kN}
\end{aligned}
$$

$\therefore \mathrm{He}>\mathrm{Fts}$; NA lies in flange.
Equating the forces
Tetal compression $=$ Total tension in
$\Rightarrow 0.86 \mathrm{scu}$ bo $x u=0.87 \mathrm{fy}$ Ast
$\Rightarrow \quad x u=\frac{0.81 f y \mathrm{Ast}}{0.36 \mathrm{fck} \mathrm{bf}}$
$\Rightarrow \quad$ sue $=\frac{0.87 \times 415 \times 1964}{0.36 \times 20 \times 1200}$
$\Rightarrow \quad x u=82.07 \mathrm{~mm}$

$$
\begin{aligned}
\text { Xumax } & =0.479 \mathrm{~d} \\
& =0.479 \times 560 \\
& =268.24 \mathrm{~mm}
\end{aligned}
$$

$\therefore x_{u}<x_{u m o r}$; hence the section is under-reeinforced

$$
M_{u}=0.87 \text { fy Ast }\left(d-0.116 x_{u}\right)
$$

$$
=0.87 \times 415 \times 1964(560-0.416 \times 82.07)
$$

$$
=92887688.7 \mathrm{~N}-\mathrm{mm}
$$

Slab
Slabs are plate elements hawing the depth ' D ' mech kmecllen than it' span \& width. They usually carry an uniformly désfriberted laced and form the floor ore roof of the beilding.
\rightarrow Like beams, slabs may y also be simply supported., cantilever or continuous depending upon the support conditions. They are classified according to the system of supports used as cinder:

1. One way spanning slab
2. Two wary spanning slab
3. Flat slabs supported directly on colermns without beans.
4. Gruel slabs
5. Circular and other states
6. Ribbed and waffle slabs.

Difference between onsway slab and two way slab
Oneway slab

1) If Longer span divided by shorten span \& Exceeds 2, that type of slab is called eneway slabs.

$$
\begin{aligned}
& y=\text { tongan span } \\
& L_{x}=\text { shorten span } \\
& { }^{L} L x=\text { shorter span }
\end{aligned}
$$

Too cocky slab

1) If meager spoon is divided by shorten span \& dorset exceeds 2 that type of slab is called tyro lodey sleep.
II) Eneroay slab is supported by became only is two sides.
2) Twp coney sta bb is scepported by beams in four sides.

ii) In two cocey slab the main been is provided in beth directions.
is provided in ene direction only.

iv) Carries lowed along one direction.

iv) It carries lond, along both dincetion.

Design of enescay slab
Given data
11. flews finish
11. Live load
iv. f_{k}, f_{y}.

Ifep-1:- (check the type of slab)

1. $l y / 8 x$ yo (oncway slab)
2. $\mathrm{by} \mid \mathrm{ex}_{x}<2$ (Ho way slat b)

Hep aa:- Couth of slab)
$\alpha=\frac{\text { Shorter span }}{\text { Baric value } \times \mathrm{MF}}$

* Baric value $=$ Page $37(2.3 / 2.1)$ Fore
$S \cdot S \cdot B=20$

$$
C \cdot B=7 .
$$

continuous $=2.6$

* $M F=$ page 98 ; from the value. of
is $=0.58 \mathrm{fy} \frac{\text { As } \mathrm{pog}}{\text { Aft pro. }}$
Normally Ranges from 1.2-1.6

$$
D=d+\phi b+\text { clear cover }
$$

* clear cover $=15 \mathrm{mod}$
* \downarrow

Tore slab $=8 \mathrm{~mm}-15 \mathrm{~mm}$
for beam $=16.24 \mathrm{~mm}$
Step -3:- (Eff. length of slab)
Page $35(28.0)$

1. L eff $=t+d$. ? whecheren is
i. l eff $=l+0.3 \mathrm{~m}\}$ taser

step - $:-(B M<M u)$

Take $b=1 \mathrm{~m}$
Dead load $=(b \times D \times 25) \mathrm{kw} / \mathrm{m}$
live lowed $=$ e 2 there given or terce $4 \mathrm{kN} / \mathrm{m}$
fleer finish $=1.5 \mathrm{kN} / \mathrm{m}$
Total load $(W)=D \cdot L+L \cdot L+F \cdot F$
$W_{u}=$ Total load $\times 1.5$

$$
\begin{aligned}
B M(M u)= & \frac{W_{u}(\text { Left })^{2}}{8}(S . S . B) \\
& \frac{w_{u}(\text { LeIf })^{2}}{2}(C \cdot B)
\end{aligned}
$$

Step 5 (check for 'di
Fer balconecol section
Mu $=$ Mulim afeind teat":
deal $=\sqrt{\frac{M \mu}{Q u_{m} \times b}}$
of decal <d (safe)
deal $>d$ (Redesign)
\therefore Normally of reangel from $100-150 \mathrm{~m}$
3tep-6 (Area of steel) + Mesic pare
$P_{t}=50\left[\frac{1-\sqrt{1-\frac{4 \cdot 6 M u}{7 C k D a^{2}}}}{\frac{d y / f c u}{}}\right]$
Aet $=\frac{\text { Pt bd }}{100}$
chocesta Min mist
HYgD $(415.500)=A$ st min $=0.12 \%$ bD Mild stet $t=$ Asfmen $=0.15 \% \mathrm{bD}$
\rightarrow-cheek Alt is rotation Asf min \& tares. aisbaren fioteci' Ass $>$ Af min. (safe)
\rightarrow Assume bar diameter \& find non
b spacing from $\frac{\pi / \mu \times \phi^{2} \times b}{\text { Asti or Astrein }}=s v$
check so or spacing
(i) Bd. (ii) 3 (comm (iii) Sv Take whichone is les

* Distribution Bar

HYSD (415,500$)=A s t_{\text {min }}=0.12 \% \mathrm{BD}$
Mild sleet $=$ Ass min $: 0.15 \%$ bD
\rightarrow Assume ban diameter t and find spacing from $\frac{\pi / 4 \times d^{2} \times b}{\text { Ash min }}=s v_{y}$
cheek for spacing
(1) 5 d (in) 450 mm (iii) Sr_{r}

Take which ore is use.
Btep-1 (Check for shear)
$v u=\frac{1 N u L}{2}$ (SSB) on Wu (C-B)
$\tau_{v}=\frac{v_{u}}{b d}$
Ce in relation τ_{c}
$\tau_{c}=$ Table 19
$P_{t}=\frac{100 \text { Astanco(nctin) }}{\text { bA }}$
$\tau_{v}<\tau_{C}$ ($O K$)
hep 8 (Check for defection)

find k from Page - 40 ; table -14

$$
A_{s}=0.5 s f_{y} \frac{\text { Asi peq (main) }}{\text { Asf pres (main) }}
$$

Q. Qurign a simply supporiced slab of size extro $3 m \times 6.2 \mathrm{~m}$ for a líving room of a residontial butsing. Take floort finish as $1.5 \mathrm{kN} / \mathrm{m}$. vie M20 grank concrute \& Feuls seel.
Bocution
Given data.
gixt $=3 \mathrm{~m} \times 6.2 \mathrm{~m}$
flocer firish $=1.5 \mathrm{kN} / \mathrm{m}$
live load $=4 \mathrm{kN} / \mathrm{m}$
$f_{c x}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$

$\frac{y y}{y_{1}}>{ }^{2}$

$\Rightarrow \frac{6.2}{3}=2.06>2$ (oneway slab)
$d=\frac{\text { Shortar span }}{\text { Beciec value } \times \text { MF }}$
$=\frac{8 \times 10^{3}}{20 \times 1.5}$
$=100 \mathrm{~mm}$
$D=d+\phi / 2+c \cdot c$
$=100+\frac{10}{8}+15$
$=120 \mathrm{~mm}$
Lepf
(i) $L+d=3 \times 10^{3}+100=3100 \mathrm{~mm}=3.1 \mathrm{~m}$
(II) $L+0.3 \mathrm{~m}=3+0.3=3.3 \mathrm{~m}$
\therefore Leff $=8.1 \mathrm{~m}$
Total load
(1) $D^{\prime L}=D \times 25=-120 \times 25=3 \mathrm{kN} / \mathrm{m}$
(1) \therefore Total Llad $(W)=D . L+L . L+F . F=3+4+1.5=8.5 \mathrm{uN} / \mathrm{m}$.
$W u=1.5 \times \mathrm{W}=1.5 \times 8.5=12.75 \mathrm{kN} / \mathrm{m}$
(Mu) $B M=\frac{W_{u}(\text { Leff })^{2}}{8}=\frac{12.75 \times(2.1)^{2}}{8}=15.31 \mathrm{kNM} . f$

$$
\text { deal }=\sqrt{\frac{M_{\nu}}{\operatorname{Sin} \times b}}=\sqrt{\frac{8151310^{6}}{0.138 \times 20 \times 1000}}=74.4 .7 \mathrm{~mm}
$$

$\therefore \quad$ deal $<d$ (safe)
$\therefore d=100 \mathrm{~mm}$
$h=50\left[\frac{1-\sqrt{1-\frac{4.6 \mathrm{Mm}}{\text { Pex bad }^{2}}}}{\frac{\text { yy fex }}{}}\right]=50\left[\frac{1-\sqrt{1-\frac{4.6 \times 15.31}{26 \times 1000 \times 10)^{2}}}}{\frac{415 / 20}{}}\right]=0.47$
 \therefore Asf $>$ Astimis (safe).
Adsein - $\frac{012}{10 t}$
Assceme $10 \mathrm{~mm} \phi$ bais, $n 0$. of boers $=\frac{A 8 t}{\frac{\pi}{4} \times(\phi)^{2}}=\frac{500}{\frac{\pi}{4} \times(10)^{2}}=6.36 \simeq 7 \mathrm{nos}$
Aff prov $=\frac{\pi}{41} \times \phi^{2} \times$ nos of beers $=\frac{\pi}{4} \times(10)^{2} \times 7=549.77 \mathrm{~mm}^{2} \simeq 550 \mathrm{~mm}^{2}$
Spating $=\frac{\pi / 1 \times \phi^{2} \times b}{4=1 \text { pre }}=\frac{\pi / 1 \times(10)^{2} \times 1000}{550}=142.79 \mathrm{~mm} \simeq 140 \mathrm{~mm}$

Check for spacing

1. $3 d=3 \times 100=300 \mathrm{~mm}$
(ii) 300 mm
(iii) 140 mm
\therefore spacing $=140 \mathrm{~mm}$
$\therefore 10 \mathrm{~mm}$ diameters bars (a) 140 mm che is provided.
Destrúbution Bans

$$
\text { Hst }=0.12 \% \text { bD }=\frac{0.12}{100} \times 1000 \times 120=144 \mathrm{~mm}^{2} \simeq 150 \mathrm{~mm}^{2}
$$

Use $8 \mathrm{~mm} \phi$ bars.

$$
\begin{aligned}
& \text { Use } 8 \mathrm{~mm} \phi \text { boers. } \\
& \text { no of beers }=\frac{150}{\pi / 4^{2}(8)^{2}}=2.98 \simeq 3 n 0 s
\end{aligned}
$$

$$
\text { spacing }=\frac{\pi / 4 \times(8)^{2} \times 1000}{150}=335 \mathrm{~mm}
$$

$$
\text { Hst pro }=3 \times \pi / 4 \times(8)^{2}=150 \mathrm{~mm}^{2}
$$

\therefore check spacing
(1) $5 d=5 \times 100=500 \mathrm{~mm}$
(ii) 450 mm
(III) 335 mm
\therefore spacing $=335 \mathrm{~mm}$
\therefore provide $8 \mathrm{~mm} \phi$ beers (c) $335 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
check for shear

$$
\begin{aligned}
& v_{u}=\frac{W_{u} l_{C f 1}}{2}=\frac{12.75 \times 81}{2}=19.76 \mathrm{kN} \\
& \tau_{v}=\frac{v_{u} b}{b d}=\frac{19.76 \times 10^{3}}{1000 \times 100}=0.1976 \\
& \tau_{c}=0.28 \\
& \therefore \tau_{v}<\tau_{c}(\mathrm{~K})
\end{aligned}
$$

check for deflection

$$
\begin{align*}
& \left(\frac{\text { left }}{d}\right)_{\text {act }}<\left(\frac{l_{\text {eff }}}{d}\right) \text { per } \\
& \left(\frac{\text { left }}{d}\right)_{\text {per }}=20 \times 1.7=34 \\
& \left(\frac{\text { left }}{d}\right)_{\text {act }}=\frac{8.1 \times 10^{3}}{100}=31 \\
& \therefore\left(\frac{\text { left }}{d}\right)_{\text {act }}<\left(\frac{\text { eff }}{d}\right)_{\text {pert }} \tag{OK}
\end{align*}
$$

Stair case

Q. Design a dog-legged staircase by LSM for ar neidential bribing choose suitable rise \& trade. U11 Moo grade of conerule \& Fe 415 site. Solution:- Data given,

Height of each fright $=1.2 \mathrm{~m}$
$f_{\text {cu }}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
Assuming L.L $=3000 \mathrm{~N} / \mathrm{mma}^{2}$
Assceming Riser $=150 \mathrm{~mm}$
No. of Riser required $=\frac{1200}{150}=8$ nos
No. of thad in each fight $=$ No. of rise -1

$$
=8-1
$$

$$
=7
$$

Let the size of each tread $=270 \mathrm{~mm}$
So. $7 \times 270=1890 \mathrm{~mm} \simeq 190 \mathrm{gmm}=1.9 \mathrm{~m}$ (Leigh of cull treaties)
Net the thickness of waist be 220 mm
at the width of landing be $1.60 \mathrm{~m}=1600 \mathrm{mb}$
Nf the watt thickness $=350 \mathrm{~mm}$

Design constant

FO_{20} \& Fe 415
$R u=0.36 f(k)\left(\frac{\text { xumax }}{d}\right)\left(1-0.416 \frac{\text { numax }}{d}\right)$
$=0.36 \times 20 \times 0.479 \times(1-0.416 \times 0.479)$.
$=2.76$
Design of flight $A B$
Dead load of waist $s l a b(\omega)=25 t=25 \times 220=5500 \mathrm{~N} / \mathrm{mm}^{2}$ wright along horizontal $=\frac{\omega \cdot \sqrt{T^{2}+R^{2}}}{T}=\frac{5500 \sqrt{(270)^{2}+(150)^{2}}}{270}$ $12=6291.77 \mathrm{~N} / \mathrm{mm}^{2}$
weight of steps $=12.5 \times R=12.5 \times 150=1875 \mathrm{~N} / \mathrm{mm}^{2}$
Live load $=3000 \mathrm{~N} / \mathrm{mm}^{2}$
finishing load (12.5 mme thick $)=24 \times 12.5=800 \mathrm{~N} / \mathrm{mm}^{2}$
Load ∞ steps of AB flight- $=6291.77+1875+3000+300=11466 \cdot 77 \mathrm{~m} / \mathrm{mm}^{2}$ Load on Landing $=6291 \cdot 77+.9000+300=9591.77 \mathrm{~N} / \mathrm{mm}^{2}$

$\Rightarrow-R_{B}(3.5)+11.466 .77 \times \frac{0.9)^{2}}{2}+4795.88 \times 1.6 \times\left(1.9+\frac{1.6}{2}\right)=0$
$\Rightarrow+R_{B}=+41415.72 / 3.5$
$\Rightarrow R_{B}=11833 \mathrm{~N}$

Total upward load $=$ Total downward load
$\Rightarrow \quad P_{A}+D_{B}=4795.86 \times 1.6+11466.77 \times 1.9$
$\Rightarrow P_{A}=29460 \cdot 971-11839$

$$
R_{A}=1 \neq 627 \cdot 271 \cdot \mathrm{~N}
$$

$\frac{\text { Sf at } x x^{\prime}}{-P_{A}+11466.77(x)=0}$
$\Rightarrow-17627 \cdot 271+11466 \cdot 77(x)=0$

$$
x=\frac{17627.271}{11466.77}=1.53 \mathrm{~m}
$$

BM Cl $x x^{\prime}$

$$
R_{A}(x)-11466.77 \times \frac{(1.53)^{2}}{2}=0
$$

$\Rightarrow=17627.271(2023)-11466.77 \times \frac{1.53)^{2}}{2} \infty$
$7 \quad 13548.44 \mathrm{~N}-\mathrm{m}$
$\mathrm{Mu}=1.5 \times \mathrm{BM}$
$=1.5 \times 13548.44$
$=20329.66 \mathrm{~N}-\mathrm{m}$
$d=\sqrt{\frac{M u}{R u b}}=\sqrt{\frac{20322.66 \times 10^{3}}{2.76 \times 160}}=95.50 \mathrm{~mm} \simeq 86 \mathrm{~mm}$
Provide an overate depth (D) $=220 \mathrm{~mm}$
Use 10 mm \& reed with clean crier of 20 mp
$\therefore d=220-\frac{10}{3}-20=195 \mathrm{~mm}>d$ (0 katy)
Hst $=0.5 \frac{f_{c k}}{d_{8}}\left[1-\sqrt{1-\frac{4.6 M_{m}}{f_{k} b d^{2}}}\right]$ (bd)
$=0.5 \times \frac{20}{415}\left[1-\sqrt{1-\frac{4.6 \times 20329.66 \times 10^{3}}{20 \times 1000 \times(199)^{2}}}\right] \times 100 \times 105$
$=298.26 \mathrm{~m}{ }^{8}$
$\simeq 800 . \mathrm{mm}^{2}$
No, of barns $=\frac{A s t}{\pi / 4 \times \phi^{2}}=\frac{300}{\pi / 4 \times(10)^{2}}=8.88 \simeq 4 \mathrm{ocs}$
spacing $=\frac{\pi / 4 \times\left(t^{2} \times 6 \cdot b\right.}{A s t}=\frac{\pi / 4 \times(b)^{2} \times 1000}{300}=261.74 \simeq 242 \mathrm{~mm}$

Alt (fist) $=0.12 \% b D=0.12 \% \times 1000 \times 220=264 \mathrm{~mm}^{2}-\mathrm{i}$
use $8 \mathrm{~mm} \phi$ bars.
No. of bars $=\frac{264}{\pi / 4 \times(8)^{2}}=5.25 \mathrm{~N} 6$ nos
spacing $=\frac{\pi / 4 \times(8)^{2} \times 1000}{264}=190 \mathrm{~mm}$
\therefore Use sim bans 6 nos@ 190 mm ese spacing as dist. bari'.'
\therefore Similarly design $D E$ flights just like fieigen $A B$.

Column

\rightarrow A compression member whose effective length oxereds three temps to its leas lateral dimension li termed cu column-
\rightarrow If the effective ungth is wen than three times 'it's least lational dimension, it is teamed as pedesteut.
\rightarrow A coleenn is a very important component of a structure. Column support beams which in term support walls \& slabs.
\rightarrow Failure of a coliemn results in the collapse, of a slsueture.
\rightarrow The celcemn is collided into 2 tejpes - (a) short coleen
(b) Long colecmn
(a) Short cotermn
\rightarrow When the slenderiner ratio is les than or equal to 12 , it is known as siret elemi.
\rightarrow Short column cere those when fails primarily dene to failure \rightarrow short cowers howe buckling be it of a limited value.

$$
\frac{L e x}{D} \leqslant 12
$$

(b) Long column
\rightarrow when the slenderness ratio is greater than 12 . 't is knocion as Long column:
\Rightarrow Long column cere those, which fails due to material failure and also due to beetling.
\rightarrow Long column have predominant beiekting value $\frac{\text { ley }}{D}>12$
Lex $=$ Eff. Length along major axis.
ley = Eff. length along minor axis
$D=$ Depth in respect of major axis.
$b=$ width of the member.

Reinforcement Requirements

* Longitudinal Reinforcement-

\rightarrow The crocs-sectional area of Longitudinal rein -y be lest then 0.8% of the gross cruss-spetionat area ont shall not \rightarrow The minimum number of Longitudinal bore provided in a column Gall be 4 in rectangular colum e \& 6 in circular erieemn.
\rightarrow The diameter of bars shall net be lest than 12 mm . ${ }^{\text {P }}$
- RCC columns having helical reinforcement stall save at wast 6 bour of Longitudinal reinfercement-within the helical reinfercenent.
\rightarrow Spacing of longitudinal bars macule of along y the periphery of

Transevarse Reinforcement

The longitudinal reinforeemont-should be laterally tied by theremavorse links to provide a restrict bars. buckling of each of the Longitudinal band
The diameter of longitudinal bars stickle not be lest than 12 mm \& the diameter of tramoverse reciofertecment shall not be less than 1/4 $4^{\text {h }}$ of the diameter of Longitudinal bars ore 6 mm .

The ends of the trandeverse links shall be properly. anchored.

Spacing or pitch

The pitch er spacing of transeverse reioforecment shall not the more then The least of the forouring :-

1. The leas lateral dimension of the compression member.

I1. I6 times the diameter of the longitudinal reinforcement bans'to be tied.
III. 800 mm .

Ir. 48 times the diameter of the transevarse reinforcement bars.

Diameter

The diameter of the polygonal linus ore ties shall not bo less than o 1/4 th of the diameter of the Longitudinal bars cent in no case less than 6 mm .
cover
The longitudinal reinforcing, bar in a column stall have crincrute woven, not lett than 40 mm , nor lest than diameters of bat whichever is greater.
Minimum Eccentricity

Check
$\frac{\text { erin }}{\begin{array}{l}\text { least lateral } \\ \text { dimension }\end{array}} \leqslant 0.0 t$ (OK)

Load taken by colveron

$P_{u}=0.4{ }^{\prime} \mathrm{f}_{\mathrm{ck}} \mathrm{Ac}^{2}+0.67 \mathrm{fy} \mathrm{Asc}$
where,
$P_{e}=$ factored load
$A c=$ Area of concrete
Asc = Area of Corgetudinal beers : :
(0)

$$
A_{c}=A g-A s c
$$

The felleceing asseemptions are made fere the ulon't state of collapse
in compression.

1. Plane seton nerenal to the oxis remain plane after bending.
2. The relationship between sfrust-sfrain distribution in concrete shale be astecmed to be partabdic. The maximum compressive pluses as the extreme compression fibre is 0.446 fck .
III. The tensile strength of the eeneriste is igniered.
iv. The stress in the reinforcement are deprived flem the representation stress-struth centre for the type of sleet wiled. Bappicon
v. The maximum compressive ow strain in concrete in axial compression is taken as 0.003.
n. The maximuern compressive strain at highly comprised extreme fibre in anerete subjected to axial compression \& bending and when Hone is no tension on the section shall he 0.00 .35 minus 0.75 times the irate at least compressed extreme fibre.
Q. A short RCC column $450 \times 450 \mathrm{~mm}$ is provided with 4 nos bars of 18 mm diameter. If the unsupported ungth of the column is 8 m . Ford the ultimate wad for the column. Use Mys grade of crenate \& Fells steel. check for eccentricity \& design for transevarte reinforcement on tie bar. Solution Data given,
$\mathrm{Ag}=450 \times 450=202500 \mathrm{~mm}^{2}$
Ac $=4 \times 7$,
Asch $\left.=4 \times \pi / \mu^{\times(18)}\right)^{2}=1017.87 \mathrm{~mm}^{2} \simeq 1018 \mathrm{~mm}^{2}$
$A C=A g-A s C=202500-1018=201482 \mathrm{~mm}^{2}$
$\mathrm{flk}_{\mathrm{K}}=20 \mathrm{~N} / \mathrm{mm}^{0}$
$f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}$
unsupported length $=3 \mathrm{~m}=3 \times 10^{3} \cdot \mathrm{~mm}$
$h_{c}=0.4 \mathrm{fu} \mathrm{Ac}+0.67 \mathrm{fy} \mathrm{Asc}$
$=0.4 \times 15 \times 201482+0.67 \times 415 \times 1018$
$=1491946.900 \mathrm{~N}$
$\simeq 14919464 \mathrm{kN}$
Eccentricity
(1) $\frac{\text { unsupported length }}{500}+\frac{\text { lateral dimension }}{50}$
$=\frac{8000}{500}+\frac{450}{80}$
$=21 \mathrm{~mm}$
(11) 20 mm
$\therefore e_{\text {min }}=21 \mathrm{~mm}$
Check

(ii) 16×18
(iii) $\begin{aligned} 200 \mathrm{~mm}, \quad \text { (IV) } & 48 \times 6 \\ = & 288 \mathrm{~mm}\end{aligned}$
$=-288 \mathrm{~mm}$
6 mm criometor bar or 28 smm c/e spacing.
\therefore Hence provide 6 mm diemmetor bere $028 \mathrm{~s} \mathrm{~mm} \mathrm{c} / \mathrm{c}$ spaceng the colemn 4 to be square. Aesume 2 min $<0.05 \mathrm{D}$. Derign the colemn. The celcoms are M_{20} grade of concrete \& rnelet stere. Boluctãe: :Cala giuen.
$\rho_{t}=1900 \mathrm{kN}$
$\varphi_{C K}^{\prime \prime}=20 \mathrm{~N} / \mathrm{mm}^{2}$

$$
f_{y}=25 \mathrm{cN} / \mathrm{mm}^{2}
$$

Assuming

$$
e_{\min }=20
$$

$Q_{\text {min }}=0.05 D$
$\Rightarrow D=\frac{20}{0.05}$
$\Rightarrow D=400 \mathrm{Nmo}$
i.e $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ sixe colcemn.

As thene is no restriction the sixe of colvemn. we can assuine 0.8% stecl is used.
$A_{s c}=0.00 \mathrm{BAg}$
$A_{c}=A g-A s e$
$\Rightarrow A C=A g-0.008 A g$
$\Rightarrow A C=0.992 \mathrm{Ag}$
$P_{\text {ue }}=0.4 \mathrm{fck} \mathrm{Ac}+0.61 \mathrm{fy}$ Asc
$\Rightarrow 1900 \times 10^{3}=0.4 \times 20 \times 0.992 \mathrm{Ag}+0.67 \times 250 \times 0.008 \mathrm{~A}^{4}$
$\Rightarrow 1900 \times 10^{3}=7.936 \mathrm{Ag}+1.34 \mathrm{Ag}$
$\Rightarrow \quad \mathrm{Ag}=\frac{1900 \times 10^{3}}{9.276}$
$\Rightarrow \mathrm{Ag}=204829.668 \mathrm{~mm}^{2}$
$\Rightarrow A g \simeq 204930 \mathrm{~mm}^{2}$
Hence the size of the column $s=\sqrt{204930}=452.69 \mathrm{~mm} \simeq 453 \mathrm{~mm}$
\therefore So adopt $453 \mathrm{~mm} \times 453 \mathrm{~mm}$ square colvern)
$P_{u}=0.4 f(x \mathrm{Ac}+0.6 f \mathrm{fy} \mathrm{Asc}$
y
$1900 \times 10^{3}=0.4 \times 80 \times[(453 \times 453)-$ Asc $]+0.67 \times 250 \times$ AsC
$1900 \times 10^{3}=1641672-8 \mathrm{AsC}+167-5 \mathrm{AsC}$
$\Rightarrow 159.5$ AsC $=258328$
$\Rightarrow \quad A B C=1619.61 \mathrm{~mm}^{2} \simeq 1620 \mathrm{~mm}^{2}$.
Asscoming 16 cms déa bars are cued.
So, no. of bors $=\frac{1620}{\frac{\pi}{4} \times(16)^{2}}=8$ nos

Lateral tie
(1) $1 / 4 \times 16=4 \mathrm{~mm}$
(1) 6 mm
$\therefore 6 \mathrm{~mm}$ diameter anat lateral ties art used.

spacing

(1) 453 mm
(II) $16 \times 16=256 \mathrm{~mm}$ (iii) 3 comm (IV) $48 \times 6=288 \mathrm{~mm}$
\therefore Hence 6 mm diameter tie bars used e $956 \mathrm{~mm} / / \mathrm{c}$ spacing.
Q. A reinforced concrete column of effective length 2.75 m carries an axial load of 1600 kN . Design the column using M_{20} grade of concrete \& Fe 415 steel.
Solution Data given,
Effective length $=2.75 \mathrm{~m}$
$f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{y}=45 \mathrm{~N} / \mathrm{mm}^{2}$
$h_{e}=1600 \mathrm{kN} \times 1.5$
$=2400 \mathrm{kN}$
Assume sheet area i 2% of gross eross-sectional area.
Age $=2 \% \mathrm{Ag}$
$\Rightarrow A S C=0.02 \mathrm{Ag}$
$A c=A g-A s c$
$\Rightarrow \mathrm{Ac}=\mathrm{Ag}-0.02 \mathrm{Ag}$
$\Rightarrow A C=0.98 \mathrm{Ag}$
$P u=0.4 \mathrm{fck} A_{c}+0.61 \mathrm{fy}$ ABc
$\Rightarrow 2400 \times 10^{3}=0.4 \times 20 \times 0.98 \mathrm{Ag}+0.67 \times 415 \times 0.02 \mathrm{Ag}$
$\Rightarrow 2400 \times 10^{3},=13.491 \mathrm{Ag}$.
$\Rightarrow A q=179091 \mathrm{~mm}^{2}$
Assume square columns.
Hence six of colum $=\sqrt{179091}$

$$
\begin{aligned}
& =423 \mathrm{~mm} \\
& \simeq 425 \mathrm{~mm}
\end{aligned}
$$

i.e the sine of colermo $=425 \mathrm{~mm} \times 425 . \mathrm{mm}$
$P_{u}=0.4 f(\mathrm{ck} \mathrm{Ac}+0.67 \mathrm{fy} \mathrm{Asc}$
$\Rightarrow 2400 \times 10^{3}=0.4 \times 20 \times(425 \times 425-A S C)+0.67 \times 415 \times 4 s c$
$\Rightarrow 2400 \times 10^{3}=1445000-8 \mathrm{ACC}+278.05 \mathrm{ASC}$
$\Rightarrow \quad A s c=\frac{2400 \times 10^{3}+1445000}{278.05-8}$
\Rightarrow ABc $=3536 \mathrm{~mm}^{2}$
use 25 mm diag bans ore cued:
\therefore No. of bars $=\frac{3536}{\frac{\pi}{4} \times(25)^{2}}=7.20 \mathrm{nos} \simeq 8$ nos
$e_{m i n}$

1. $\frac{2.75 \times 10^{3}}{500}+\frac{425}{30}=19.66 \mathrm{~mm}$
2. 20 mm

$$
\therefore e_{\mathrm{min}}=20 \mathrm{~mm}
$$

Check.

$$
\frac{20}{425}=0.04<0.05 \text { (ox) }
$$

Treconseverse Reinforcement

$$
\text { 1. } 1 / 4 \times 25=6.95 \mathrm{~mm}
$$

11. 6 mm
\therefore Hence use 8 mmdia beers.
Spacing
(1) 425 mm
(ii) $16 \times 25=400 \mathrm{~mm}$
(III) 300 mm
(iv) $48 \times 8=384 \mathrm{~mm}$
\therefore Hence use 8 mm dial bars @30 om Hl spacing.
Circular colecmn
\rightarrow The strength of a colum with helical reinforcement satisfying the requirements given shall be taken as t.05 times the strungth of similar member with lateral ties.

$$
P_{e}=1.05(0.41 / x 4 e+0.64 \mathrm{fy} \mathrm{sec})
$$

Die of tore $\left(D_{K}\right)=$ ia of column $-2 \times C \cdot C+2 \times$ die of helical rieinforcesent Area of core $\left(A_{k}\right)=\frac{\pi}{4} \times\left(D_{k}\right)^{2}$.
Dea of woe corresponding to the centre of helical boer $\left(d_{b}\right)=$ $=D_{K}-$ Dea of helical bar
check for validity of formula used.
consider one pitch length of the column
length of helix pen piston ungtt) $=\sqrt{\pi(d n)^{2}+p^{2}}$
where, $P=$ Paten (\because Asccimo $P=45 \mathrm{~mm}$)
volume of helix pore pitch length = tex length of helix per pitch length volermo of core pert pitch length $=$ Area of core \times Pitch
volume of helical reinforcement $\geqslant 0.36\left(\frac{A g}{A R}-1\right)\left(\frac{f_{c x}}{f_{y}}\right)$ (ok),
o gere,
$A g=$ Gross css are of the sec n
$A K=$ Area of core

Pitch of nelical Reinforcement
(i) $P \not 775 \mathrm{~mm}$
(ii) $P \neq 1 / 2$ (dia of colvemn)
(iii) $P \not \subset 25 \mathrm{~mm}$
(iv) $P \nless 3$ (dia of nelical reiofortement)
\therefore So assume Pitch (P) $=45 \mathrm{~mm}$
Spacing
(i) The least lateral dimention of collemo
(ii) $16 \times$ dia of longietudinal reinfercement
(iii) (200 mm
(iv) $48 \times$ dia of lielieal reinforcement

Diameter of helical reinforicemont
(i) $D K K_{1} \times$ dia of longitudinal reinforeement-
(ii) $D \nless 5 \mathrm{~mm}$
\therefore Assume 6 mm - Emb dia for helical reenforcement.
Q. Determine the safe axial leced fort a colemn of 400 mm dia, reinforced with Bbans of 25 mm dia al longitudixat stect. It is provided with 8 mm dia helical meioforeement at a pitch of 45 mos use M_{20} grade of concrots \& fe पIS stect.
Solution; - Eata given.
clia of coleems $=400 \mathrm{~mm}$

$$
\begin{aligned}
\text { Ase } & =6 \times \pi /{ }^{\times(25)^{2}} \\
& =8945 \mathrm{~mm}^{2}
\end{aligned}
$$

Dia of helical reinforcement $=8 \mathrm{~mm}$

$$
\begin{aligned}
& \text { foch }(P)=45 \mathrm{~mm} \\
& f^{2} c k=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& f^{\prime} y=415 \mathrm{~N} / \mathrm{mm}^{2} \\
& \begin{aligned}
A g & =\frac{\pi}{4} \times(400)^{2} \\
& =125663.7 \mathrm{~mm}^{2} \\
& =125664 \mathrm{~mm}^{2} \\
A c & =A g-A S C \\
& =125664-2 q 45 \\
& =122719 \mathrm{~mm}^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& P_{u}=1.05\left(0.4 \mathrm{fex}_{\mathrm{ek}} \mathrm{Ac}+0.67 \mathrm{fy} \mathrm{Aec}\right) \\
& =1.05(0.4 \times 20 \times 122719+0.67 \times 415 \times 2945) \\
& =1990640 \mathrm{Nm} \\
& =1890.64 \mathrm{kN} \\
& \text { Axial Load }=\mathrm{Pu} / 1.5 \\
& =1890.64 / 1.5 \\
& =1260.42 \mathrm{kN}
\end{aligned}
$$

Shock

$$
\begin{aligned}
\text { Dea of core }\left(D_{k}\right) & =\phi \text { of column }-2 \times c \cdot c+2 \times \phi \text { of helical reinforcement } \\
& =400-2 \times 40+2 \times 8 \\
& =236 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Area of core } \begin{aligned}
& =336 \mathrm{~mm} \\
\left(A_{k}\right) & =\frac{\pi}{4} \times(D k)^{2} \\
& =\frac{\pi}{4} \times(336)^{2} \\
& =88668 \mathrm{~mm}^{2}
\end{aligned}
$$

\$ of coleems corresponding to the centre of helical bar $(d b)=$

$$
\begin{aligned}
& =D_{k}-\phi \text { of helical reinforcement } \\
& =336-8 \\
& =328 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Length of helix per pitch length } & =\sqrt{\pi\left((1 h)^{2}+p^{2}\right.} \\
& =\sqrt{\pi(328)^{2}+(45)^{2}} \\
& =583 \mathrm{~mm}
\end{aligned}
$$

volveme of helix per pitch length = $50 \times$ length of helix per pitch length

$$
\begin{aligned}
& =50 \times 583 \\
& =29150 \mathrm{~mm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { volume of core per pitch length } & =A k \times \text { Pitch } \\
& =88668 \times 45 \\
& =3990060 \mathrm{~mm}^{3}
\end{aligned}
$$

check

$$
\begin{aligned}
& \frac{\text { vol }^{m} \text { of helix }}{\text { vol col core }} \geqslant 0.36\left(\frac{\mathrm{Ag}}{\mathrm{Ak}}-1\right)\left(\frac{f u x}{\mathrm{~J}_{y}}\right) \\
& \Rightarrow \frac{29150}{3990060} \geqslant 0.36\left(\frac{125664}{88668}-1\right)^{\prime}\left(\frac{20}{415}\right) \\
& \Rightarrow 0.0073 \geqslant 0.0072 \quad(0 \mathrm{k})
\end{aligned}
$$

Spacing
(I) 400 mm
(II) 16×25
(III) 300 mm
(iv) 48×8

$$
=400 \mathrm{~mm}
$$

$$
=384 \mathrm{~mm}
$$

\therefore uso 8 mm cia helical reinforcement @ 300 mm che spacing. (H)
Q. Design a circular column to cavery an cexial load of 1500 kH . The colecmn has an effectivo longth of $\Omega .50 \mathrm{~m}$. Uso M_{20} grado of concrote \& fe 415 \&teal.
solution
Eata given.
Axial Lecal $(P)=1500 \mathrm{kN}$
Effective Lengen $(L)=2.5 \mathrm{M}$

$$
\begin{aligned}
& \text { Effecteve } \\
& f_{c k}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{y}=415 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Assume stect crrea is 2% of gross erress-sectional area of the crlemn.
$A B C=2 \%$ of $A g$

$$
\begin{aligned}
& \Rightarrow \text { Asc }=\frac{2}{100} \times A \mathrm{~g} \\
& \Rightarrow A s e=0.02 \mathrm{Ag}
\end{aligned}
$$

$$
\begin{aligned}
A c & =A g-A s c \\
\Rightarrow A c & =A g-0.02 A g \\
\Rightarrow A c & =0.98 A g
\end{aligned}
$$

factored Lcad $=1.5 \times 1500$

$$
\Rightarrow P u=2250 \mathrm{kN}
$$

$f_{u}=1 . \cos \left(0.4 \mathrm{fck}_{\mathrm{ck}} \mathrm{Ac}_{\mathrm{c}}+0.67 \mathrm{fy} \mathrm{Asc}\right)$

$$
\Rightarrow 2250 \times 10^{3}=1.05(0.4 \times 20 \times 0.98 \mathrm{Ag}+0.67 \times 415 \times 0.02 \mathrm{Ag})
$$

$$
\Rightarrow \quad 14.07 \mathrm{Ag}=2250 \times 10^{3}
$$

$$
\Rightarrow \quad A g=159914.71 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad A g=159915 \mathrm{~mm}^{2} \\
& \Rightarrow \quad A g \geq 0
\end{aligned}
$$

Assceme circular colemn is used.
So, the sixe of the columo is,

$$
\begin{aligned}
d & =\sqrt{\frac{159915 \times 4}{\pi}} \\
& =458 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
A C & =A g-A S C \\
& =\frac{\pi}{4} \times(452)^{2}-A S C \\
& =160460-A S C
\end{aligned}
$$

$P_{u}=1.05(0.4 \mathrm{fck} A c+0.67 \mathrm{fly} \mathrm{Acc})$
$\Rightarrow 2250 \times 10^{3}=1.05[0.4 \times 20 \times(160460-$ Asc $)+0.67 \times 415 \times$ Asc $]$
$\Rightarrow 2250 \times 10^{3}=1347864-8.4$ Asc +2011.95 Asc
$\Rightarrow 283.55 \mathrm{AsC}=902136$
\Rightarrow AsC $=81$ St mm^{2}
Assceme $25 \mathrm{~mm} \phi$ bart is culed

$$
\text { So, no. of bars }=\frac{3181}{\frac{\pi}{4} \times(25)^{2}}=6.48 \text { rios } \simeq 7 \text { nos }
$$

Qicermionor of hetical recinforetment

1. $D+1 / 4$ ($\$$ of tengitudincal reinforcoment)

$$
\begin{aligned}
& \Rightarrow 452 \not 41 / 4(25) \\
& \Rightarrow 452 \not \& 6.25 \mathrm{~mm}
\end{aligned}
$$

2.

$$
\begin{aligned}
& D \times 5 \mathrm{~mm} \\
& 452 \times 5 \mathrm{~mm}
\end{aligned}
$$

\therefore So cescume smm dia of helical reinforceroent.
Check

$$
\begin{aligned}
& D_{k}=\phi \text { of column }-2 \times \text { eleareceves }+2 \times \phi \text { of helical recinfoncenent } \\
& =452-2 \times 40+2 \times 8 \\
& =38 \mathrm{~mm} \\
& A_{k}=\frac{\pi}{4}\left(D_{k}\right)^{2} \\
& =\frac{\pi}{4}(388)^{2} \\
& =118237 \mathrm{~mm}^{2} \\
& d_{n}=D_{k}-\phi \text { of helical reinforeement } \\
& =388-8 \\
& =380 \mathrm{~mm} \\
& \text { tength of relix per piten length }=\sqrt{\pi d^{2}+P^{2}} \quad(\because \text { Ascieme } P=45 \mathrm{mh}) \\
& =\sqrt{\pi \times(380)^{2}+(45)^{2}} \\
& =675 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { volume of nelix per piteb eungth } & =50 \times \text { length of helix per piten tength } \\
& =50 \times 675 \\
& =33750 \mathrm{~mm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { volence of core per pitch lengeth } & =A_{k} \times \text { piten } \\
& =118231 \times 45 \\
& =5320665 \mathrm{~mm}^{3}
\end{aligned}
$$

chece
$\frac{\text { volume of helix }}{\text { voleme of corce }} \geqslant 0.36\left(\frac{A g}{A k}-1\right)\left(\frac{f(k}{f y}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{33750}{5320665} \geqslant 0.36\left(\frac{15995}{118237}-1\right)\left(\frac{20}{415}\right) \\
&
\end{aligned}
$$

$\Rightarrow 0.00684>0.00611$ (Ok)
Spacing
(11) 16×25
(ii) 800 mm
(iv) 48×8^{1}
(1) 452 mm
$=400 \mathrm{~mm}$
$\cdot=984 \mathrm{~mm}$
$\therefore 80$ use 8mm diá helical reinforcement @ 800 mm c/c spacing. (t)

Design of a square froting
Siveridalás
Po, voil bearcing macity (SBC) sixe of colecmo 3 ffo, fy.
stop-1 :-
Acdd 10% tored as self cueight of focting.

Step-2 (calculdete area of footing)

$$
A=\frac{P+10 \% P}{S B C}
$$

sides of froting $=B=\sqrt{A}$
Step-3
Reaction of Soil/Pressure $(q u)=\frac{P_{u}}{A}=\frac{1.5 \times P}{A}$ (for factored load)
Step 4 (Calculation of minimuen deptb)
This inclecde
(1) BM
(11) oneway shear
(iii) Twociocty shean
(1) BM calculation

$$
\begin{aligned}
& M_{u}=q u\left(\frac{B-b}{2}\right) \times 1 / 2\left(\frac{b-b}{2}\right) \\
& M_{u}=q_{u} \frac{(a-b)^{2}}{8} \\
& M u=\frac{q u L^{2}}{8}
\end{aligned}
$$

Moment at tumiting moment as pert

I6 456: 2000 ; $\operatorname{page}-96$

$$
\text { Melim }=0.26 \mathrm{fck}\left(\frac{\text { xumox }}{d}\right)\left(1-1.416 \frac{\text { xumge }}{d}\right) \mathrm{bd} d^{2}
$$

or

$$
\begin{aligned}
\text { Meutim } & =0.14 \mathrm{f} \mathrm{fexbd}^{2}\left(\$ d^{2} 250\right) \\
& =0.138 \mathrm{fck}_{\mathrm{ck}} b d^{2} \text { (Fe प15) } \\
& =0.133 \mathrm{fck}_{\mathrm{ck}} b d^{2} \quad\left(\mathrm{Fe}_{2} 500\right)
\end{aligned}
$$

(II) Oneway shear

Fort this critical section is out at a distance ' α 'from the column face, then design shearn at pen It code.

$$
v_{u}=q_{u} B\left[\left(\frac{n-b}{2}\right)-d\right]
$$

$v_{u}=$ soil presture.

III. Double shear

Two cock shear also called punching shear. When critical section is at a distance ($\mathrm{cl} / 2$) from ellen fact.

This type of failures occur when the dept of section is les.
Perimeter of punching

$$
\text { shearer }=4(b+d)
$$

Area of concrete resiting punching Force $(A)=4(b+d) \times d$
Force of punching $Q u$ is given by

$$
\begin{aligned}
& Q_{u}=q_{u} \times \text { shear area. } \\
& S_{u}=q_{u} \times\left[B^{2}-(b+d)^{2}\right]
\end{aligned}
$$

\therefore Punching shear stress, τ_{p} is given by

$$
\tau_{p}=\frac{Q u}{A}=0.25 \sqrt{\mathrm{Fk}_{\mathrm{k}}}
$$

\therefore The value is permissible value of, τp.
Btop-5 (Asti)

$$
M_{u}=0.87 f y \text { Asti } d\left[1-\frac{\text { Act } f_{y}}{b d f(k}\right]
$$

Step -6 C.Spaciog)

$$
\text { Spacing }=\frac{\text { Area of one bart }}{\text { Area of steed }} \times 1000
$$

Q. Design an isolated footing for a column of $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ subjected to an axial load of 1800 kN . The Sa fe bearing capacity of soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Use M_{20} grade of concrete \& Fe 415 sited.
Solution:- Data given.
size of colecme $=400 \mathrm{~mm} \times 400 \mathrm{~mm}$

$$
\begin{aligned}
S B C & =150 \mathrm{NN} / \mathrm{m}^{2} \\
f_{\mathrm{K}} & =20 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{y} & =415 \mathrm{~N} / \mathrm{mm}^{2} \\
P & =1800 \mathrm{kN}
\end{aligned}
$$

Increase 10% of given load,
Area of footing $(A)=\frac{P+10 \% \text { of } P}{S B C}=\frac{1800+0.1 \times 1800}{150}=13.20 \mathrm{~m}^{2}$ we: design, square: feting,
then, $a^{2}=18: 20 \mathrm{~m}^{2}$

$$
\Rightarrow a=\sqrt{13.20}=8.63 \mathrm{~m} \simeq 4 \mathrm{~m}
$$

\therefore Hence provide $4 \mathrm{~m} \times 4 \mathrm{~m}$ site of footing.

$$
q_{u}=\frac{p_{u}}{a^{2}}=\frac{1.5 \times 1800}{4 \times 4}=168.75 \mathrm{kN} / \mathrm{m}^{2}=0.166 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\begin{aligned}
v_{u} & =q u B\left(\frac{n-b}{2}-d\right) \\
& =0.168 \times 4000\left(\frac{4000-400}{2}-d\right) \\
& =672(1800-d)
\end{aligned}
$$

Assuming 0.2% of steal, from M_{20}

$$
\begin{aligned}
& \text { grade of conercte } \quad \text { (Page }-73(\text { talde 19) }] \\
& \tau_{c}=0.32 \mathrm{~N} / \mathrm{mm}^{2} \quad \quad \text { Pag } \\
& v_{u}=\tau_{c} 3 d=0.32 \times 4000 \times d=1280 d \\
& \Rightarrow v_{u}=672(1800-d) \\
& \Rightarrow 1280 \mathrm{c}=672(1800-\mathrm{d}) \\
& \Rightarrow 1280 d=1209600-672 d \\
& \Rightarrow d=\frac{1209600}{1952} \\
& \Rightarrow d=619.67 \mathrm{~mm} \\
& \Rightarrow d=620 \mathrm{~mm}
\end{aligned}
$$

check for bending

$$
\begin{aligned}
\text { Meulim } & =0.138 \mathrm{fokB} d^{2} \quad(\text { for 415 }) \\
& =0.138 \times 20 \times 4000 \times(620)^{2} \\
& =4243.77 \times 10^{6} \mathrm{H}-\mathrm{mm} \\
M_{u} & =q_{u} B \frac{(B-b)^{2}}{8} \\
& =0.168 \times 4000 \times \frac{(4000-400)^{2}}{8} \\
& =1088.64 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

$\therefore M u<M u l i m$; herce provided depth is suffeceent?
ehock for two wery sheare
critical section at d/2 dithanee frem theytacgob colesnn in teno ency sheare
Perimeter of ertitical section

$$
\begin{aligned}
& =4(b+d) \\
& =4(400+620) \\
& =4080 \mathrm{md}
\end{aligned}
$$

Arwa of eritital section $=$ Perimosion x depth

$$
=4080 \times 620
$$

$$
\begin{aligned}
& =2599600 \mathrm{~mm}^{2} \\
\text { Shear sfres in two way shear } & =\frac{\text { wpuand presure in shaded curea }}{\text { Area of eritical scetion }} \\
& =\frac{0.168(4000 \times 4000-1080 \times 1080)}{4080 \times 620}
\end{aligned}
$$

(But cuccording to Is cocle) $=0.99 \mathrm{~N} / \mathrm{mm}^{2}$
Maximeam permitieq shecen stress $=0.25 \sqrt{\text { fek }}=0.25 \sqrt{20}=1.118 \mathrm{~N} / \mathrm{mm}^{2}$

Sheat stress in troowaly shear
\therefore Hence provided depth of footing is 0 K .
Ast
$M_{u}=0.87$ fy Ast $d\left[1-\frac{\text { Ast fy }}{\text { Bd fue }}\right]$

$$
\begin{aligned}
& M_{u}=0.87 \mathrm{fy} \text { Ast } d\left[1-\frac{A s t r u}{B d}\right] \\
\Rightarrow & 1088.64 \times 10^{6}=0.87 \times 415 \times A S t \times 620\left[1-\frac{A s t \times 415}{4000 \times 620 \times 20}\right] \\
\Rightarrow & =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 1088.64 \times 10^{6}=0.87 \times 1081^{6}=0 \\
& \Rightarrow 1.87 \mathrm{Ast}^{2}-22385148 t+1088.64 \times 10^{6}
\end{aligned}
$$

$$
\Rightarrow \quad \text { Ast }=5078.7 \mathrm{~mm}^{2}
$$

$$
\Rightarrow \quad \text { Asf } \simeq 507 a \mathrm{~mm}^{2}
$$

Assume 20 mm dia bar is used.
No. of baers $=\frac{5079}{\frac{\pi}{4} \times(20)^{2}}=16$ ces nos

$$
\begin{aligned}
\text { spacing } & =\frac{\text { Area of one bart }}{\text { Ast }} \times 0 \\
& =\frac{\pi \mu_{1} \times(20)^{2}}{5079} \times 4000 \\
& =61.85 \mathrm{~mm} \\
& \simeq 6.2 \mathrm{~mm}
\end{aligned}
$$

\therefore Hence provide 16 nos of 20 mm diabaris@ $62 \mathrm{~mm} \mathrm{e} / \mathrm{c}$ spacin

$20 \mathrm{~mm} \phi @ 62 \mathrm{~mm}$ cle spacing

