LECTURE NOTES ADVANCED MANUFACTURING \& CAD CAM
 (TH-4)
 (6th semester MECHANICAL ENGINEERING)

Prepared By
Mr. PRAVIN PATHAK
Lecturer Mechanical Engineering

CH-B1 $\gg \underset{\sim}{\text { conconmen }}$ Nonverion M / C process $\lll \ll$ rumor mm
\rightarrow Two tuxes of Maching process.
(1) Conve action al
(2) Non convectional $\bar{\sigma}$
\rightarrow convectional \rightarrow Workpiece touches the tool.
\rightarrow (Drilling, Maching, ervinding, lathe of C.
\rightarrow How surface finish, larger man power moratime consumption, lour tool life.
\rightarrow Nonconvectional $\rightarrow W / P$ is not touch the tool
\rightarrow for ex \div electro chemical M / C process Electro discharge
plasma are
Leaser beam abrasive Met electron beam,

* Low surface finish.

Lesser power requèred.
Aparantey using time requires.
Long tool line.
Non convectional:-
m mom
\rightarrow Those energy source which are reneulable \& ecological safe that is called non convectional machining process.
\rightarrow It is a special type of Machining process in which there is no direct contact bet the tool \& the workpiece.
\rightarrow in non-convectional m / c process it is a form of energy is used to remove unwanted material from a given woP.
\rightarrow Electro chemical Machining process:rom room $\quad \mathrm{mm}$ (rms

*) Working Process:-
\rightarrow First the workpiece is assembled in the fixture tool \& too is brought close to the workpiece. The tool \& wop is immersed in a suitable electrolyte.
\rightarrow After that, potential difference is applied across the workpiece (anode) \& tool (cathod). The removal of material is starts. The material is removed as in the same manner as we have discussed above in the working principle.
\rightarrow Tool feed system advances to the tool towards
the workpiece \& always keeps a required grapple in bet them. The material from the workpiece is comes at as possible ions \& combine with the lines present in the electrolyte \& precipitates as as sludge.
, Hydroxen gas is libarcted at cathode during the machining process.
\rightarrow Since the dessocitation of the material from the workpiece takes place at atomic level, so it gives excellent surface finish.
\rightarrow The sludge from the tank is takenouf \& separated from the electrolyte. The electrolyte after filtration again trasported to the tank of the $\mathbb{A C M}$ process. \rightarrow EttPPlicafion :
\rightarrow The ECM process is used for die sinking operation, profiling \& contouring, drilling, grinding, trepanning \& Micro machining.
\rightarrow It is used nor machining steam turbine blades within - closed limits.
$\rightarrow \rightarrow$ Efdvar)tages ? mrmorrt?
\rightarrow Negligible tool wear.
\rightarrow complex \& concave curvature parts can be produced easily thy the use of convex \& concave tools.
\rightarrow NO forces \& residual stress are produced, because \rightarrow there is no direct contact bet ${ }^{1}$ tool \& ω / P.
\rightarrow Excellent surface finish is produced.
\rightarrow Less heat is generated.

Disadvantasex: \div mommom
\rightarrow The risk of corrosion for tool, workpiece \& equipment increases in the case of saline \& acidic electrolyte.
\rightarrow Electrochemical machining is capable of machining electrically conductive naterials only.
\rightarrow High power consumption.
\rightarrow High initial investment cost.
(2) Electro discharae Machinina process: (EDM):mm arm mom rm mom

dieelectric fluid

$$
\begin{aligned}
& \text { akgi }=9.8 \mathrm{~N} \\
& 2 k g f=19.6 \mathrm{~N} / \mathrm{cm}^{2} .
\end{aligned}
$$

ckerosene/deionised water)
\rightarrow Equipment : The various equipment used in electro discharge mrmormon machining are
(1) Dielectric reservoir, pump \& circulating system \div
\rightarrow pump is used to circulate the dielectric medium bet ${ }^{\wedge}$ the two electrodes. Kerosene or deionized water as used as dielectric medium.
(2) Power venerator \& control unit:-
\rightarrow Generator is used to apply potential difference. The voltage used in this machining process is not constant but it is applied in pulse form.
(3) Working tank with work holding device:-
\rightarrow It has working tank with a work hording device. The workpiece is hold in the work holding devices. The tank contains dielectric medium.
(4) Tool holder : it is used to hold the tool.
(5) servosystem : ती servosystem is used to control the fool. it maintains the necessary gap bet the electrodes.
Working of $\operatorname{HDM} \div$ room cm rom
$1 \rightarrow$ first the tool \& w/P is clamped to the m / C. Niter that with the help of servo mechanism a small ap is maintain in bet ${ }^{n}$ the tool \& Workpiece.
e
($2 \rightarrow$ The tool \& woP is immersed in dielectric medium.
($3 \rightarrow$ A potential difference is applied across the electrode.
c. An electric spark is generated in bet 1 the tool \& w/p.

C The spark senates a heat about 10000 degree celsius \& due to this heat the material from the alP starts to vaporize \& melts,
$A \rightarrow$ The spark generates in electrical discharge machining
is not contineous. as the volthape branks, the dielectric Fluid flushes auras the molten materials leaving behind a crater.
\rightarrow This process keep continues \& machined the wop.
*) etdrantages :-
momomm
\rightarrow Lies time required as compared to convectional machining.
\rightarrow Metals having high melting point temp. can be easily machined.
\rightarrow Excellent surface finish can be obtained.

- Complex shapes \& corners can be machined.
\rightarrow Burrface machining surface.
*) Disadvantages:-
rmonorsints
\rightarrow only electrical conductive materials can be machined.
\rightarrow High voltage required.
\rightarrow High initial cost.
\rightarrow High maintanance.
\rightarrow More time required for machining.
\rightarrow Thin materials can't be machine.
*) $4 \|\left. P\right|^{n} /$ uses:
(romormom
\rightarrow It is mostly used by mold making \& dies industries.
\rightarrow It is used for coinage die making.
\rightarrow It also used in aerospace Industries.
\rightarrow It use to creat small holes in variety of application.

\rightarrow Equipments required:

1. DC electric Supply.
2. Tungsten electrodes -
3. Nozzle.
4. Plasma \& shielding gas.
5. W/P \& fixture.
\rightarrow What is plasma $\frac{1}{\text { - }}$
\rightarrow When a gas or air heated at high temps, the number of collisions bet atoms increases.
\rightarrow When you heat the gas above $5500^{\circ} \mathrm{C}$, it partially ionises into tyre ions, negetive ions \& neutral ions,
\rightarrow When you further heat the gay above $11000^{\circ} \mathrm{C}$ then, it completely ionises.
\rightarrow such a completely ionised as is called plasma.
\rightarrow plasma states lies in bet temp $11000^{\circ} \mathrm{C}$ to $28000^{\circ} \mathrm{C}$. Working of $P E H M:$
rome m m :
\rightarrow It consist of a plasma gun.
\rightarrow Plasma gun has an electrode made up of tungsten situated in the chamber.
\rightarrow Here this tungsten electrode is connected to the - vet terminal O7 DC power supply thus the tungsten acts as cathod.
\rightarrow While the tie terminal of "DC powder supply is connect acted to the nozzle thus the nozzle of the plasma qua acts as anode. \rightarrow Efts we give the power supply, to the system, an electric arc develops bet the cathodic tungsten electrode \& an anodée nozzle.
\rightarrow Els the aus cones in contact with the plasma, there is a collision bet 1 the atoms of say \& electrons of an electric $\operatorname{arc} \&$ as a result, we get an ionised gas, that means we get the plasma state that we wanted for PAM.
\rightarrow Now this plasma is targeted towards the workpiece with a high velocity \& the machining process starts.
\rightarrow in the whole process, hishtemp cond"s are required, as a not sasses come out of nozzle there are chances of over heating.
\rightarrow In order to prevent this overheating, a water Tacket is used. Elldvantages:

- In PAM hard as well as brittle metals can be easily machined..
mach in can be applied to almost all types of Mefals.

25) \rightarrow We get a better dimensional accuracy,
\rightarrow It is a simple process to carry out \& a very efficient process. \rightarrow it takes a big part in automobile repair of Met enzine blades. Disadvantages:moromes
\rightarrow Its initial cost is very high.
\rightarrow It is uneconomical for bigger eavities to be machined,
\rightarrow inert ass consumption is high.
\rightarrow This process can affect human exey so a proper googles or hemet must be worn by an operator:"
\rightarrow Take proper precaution for wholé procesy. EApplication: rromm
\rightarrow It is mostly usedfor cryogenic, high temp corrosion resistance allogs.
\rightarrow It is aso used in case of titanium plate upto 8 mm - thickness.
$\Rightarrow A t$ is used in nelelear submarine pipe sustem \& for

- werding steel rocket motor case.

? \rightarrow Equipments are used in AJM are as follows.
\rightarrow (1) sras propulsion sastem
- (2) \#brasive feeder.
- (5) Abrasive
\rightarrow (4) Cutting nozzle.
\rightarrow (5) Machining Chamber
9 (6) compressor
\rightarrow (7) Hir inlet.
9

*) Alorking principle:-
rumor rom
\rightarrow The basic consept of AJM is abrasive erosion or metal cutting by high velocity abrasive particle. Its working process can be easily summarized into following point.
(1) Lest pas or air compressed into gas compressor. There the density \& pressure of gas increases.
(2) Now this compressed was send to filtration unit, where dust \& there suspended particle removed from it.
(5) This clean gas sends to drier, which absorb moisture. from it. It is used to avoid water or oil contamination of abrasive power.
(4) Now this clean \& dry gas sends to mixing chamber where abrasive feeder feed abrasive particle in it. The
abrasive particle is about 50 micro meter grit size.
(5) The high pressuring abrasive carried was send to nozzle where its pressure energy Converted into kinetic energy. The velocity of abrasive particle leaving the nozzle is about $200 \mathrm{~m} / \mathrm{s}$.
(6) The standoff distance bet ${ }^{\wedge}$ workpiece \& nozzle is about 2 mm .
(7) Now these high velocity abrasive particles impinge on the ω / P. These high velocity abrasive particles remove the material by micro cutting action as well as brittle Fracture of the work material.
\rightarrow Elldvantages \div
\rightarrow rrmmm
\rightarrow High surface finish.
\rightarrow It can machine heat sensitive material.
\rightarrow It is free from vibration.
\rightarrow Initialization cost is lowe.
\rightarrow Thin section can be machined easily.
(Dis advantages ${ }^{\circ}$
mommmor
$\Rightarrow \rightarrow$ Low metal remove rate.
\Rightarrow Abrasive particle can embedded into w / p mostly in soft metals.
$\Rightarrow \rightarrow$ Nozzle life is limited so it needs frequently replacement.
$\Rightarrow \rightarrow$ Abrasive particle can't be reuse in this process.
$\rightarrow \rightarrow$ at can't use for m / c soft \& ductile material.
\rightarrow Application/uses:-
\rightarrow rom rom
$\rightarrow \rightarrow$ is used in drilling \& cutting of hardened metals,
$\rightarrow \rightarrow$ int is used for machining brittle \& heat sensitive material
\rightarrow like glasses, quartz, sapphire, mica, ceramic etc.
\rightarrow to it is used for manufacturing electronics devices.
*) Wreaker Beam Machining process:
$\mathrm{mm} \mathrm{mm} \mathrm{mm}^{\mathrm{m}}$
*) Main parks:- The various main parts used in the LBM are
1). A pump medium :- Al pump medium is needed that contains a large number of atoms. The atoms of the media are used to produce leasers.

2) Flash tamp \div it is used to provide the necessary energy to the atoms to excite their electrons.
3) power supply: A high voltage power source is used Produce light in the flash tube.
4) capacitor: It is used to operate the leaser beam machine at puss mode.
B) Reflection, Minor:- There are two types of minor is used First one is 100% reflecting \& othere is partially reflection. $\rightarrow 100 \%$ reflecting miro is kept at one end \& partially reflecting Minor is at another end.
\rightarrow The, leaser bearncames out when partially, reflecting minor is kept:
\rightarrow Working of Leaser Beans Machining: non min ceric
\rightarrow Et very high energy leaser beam is produced by the laser m / C. This leaper beam produced is focused on the workpiece to be machined.

When the leaser beam strikes the surface of the workpiece, the thermal energy of the leaser beam is transferred to the surface of the workpiece. This heats, metz, vaporizes \& finally removes the material from the workpiece.
\rightarrow In this way leaser be machining works.

Leaser (Light amplification by stimulated emission of radiation)
\Rightarrow Eldrantages: it can be focused to a very small diameter.
\rightarrow love maintenance cost.
\Longrightarrow It produces a very high amount of energy, about 100 mk \rightarrow per square mm of area.
\rightarrow It is capable producing very a ccurately placed holes.
\rightarrow There is 90 physical contact bet the tool \& ω / p.
$\xrightarrow{\rightarrow} \rightarrow$ Vera high precision work.

Disad vantages :-
\rightarrow High initial cost.
\rightarrow Love production rate since it is not, designed for mass production.
\rightarrow it requires a lot of energy for machining process.
\rightarrow High maintenance cost.
\rightarrow High skilled trainer.
Etlpplication:-
common:-
\rightarrow at is used in heavy manfefacturnar, industries, light manufacturing industries, electronic industries, me apical industries etc.
\Rightarrow IILECTRON BEAM Muthenciz process\% $\frac{1}{2}$

Equipments:- There are some important parts are as mormon follows
\rightarrow Electron Dian.
\Rightarrow Annular Bias Grid.
\rightarrow Magnetic Lenses.
\rightarrow Electromagnetic loss \& deflection coil,
\rightarrow WCP \& Work holing device.
-) WORKING \div The RBM works same as leaser beam machining. morrrror ats corking can be summarize into following (points. Aspect electron sun produces high velocity electron particles. These electron particles. move towards anode which is placed after cathod table.
(2) Now this high intense electron beam passes through magnetic lenses. There are a series of lenses which take

care of only convergent electron passes through it. It absorb all divergent electron \& lomenerges electron. It provide a high \Rightarrow quality electron beam.
(3) The electron beam nove passes throwah electromannetic lens \& - defecting coil. It focus the electron beam at a spot.
(4) The high intense electron Beam impinges on the w/p where. \rightarrow kinetic energy of electrons convert into thermal energy.
\rightarrow (5) The material is removed from contact surface by mating \& , vaporization due to this high heat generated by conversion
2. Kinetic energy of electrons convert into thermal energy. This - whole process take place in a vaccum chamber other arise there electron collide with air particle bet " path \& loses is its kinetic energy.

E\#dvantages :-
manomol
\rightarrow It can be used for produce very small size hole in any shape. \rightarrow It can be machining, any material irrespective its hardness \& other mechanical properties.
\rightarrow At provide good surface finish:
\rightarrow Highly reacting material can be, easily.
Disadvantages:nomomos
\rightarrow High capital cost."
\rightarrow High sailed operator required.
\rightarrow Low material removal rate:
\rightarrow Regular maintenance is requited.
explication) $\frac{1}{3}$
\rightarrow It is used to produce holes in diesel injection nozzle.
\rightarrow used in aerospace industries
\rightarrow It is used to provide very small size holes about 100 mm to 2 millimeter.

》) HUTOMATION <<

- Defination $\frac{1}{0}$ is a technology which is used to complete fromm some process by minimizing the human effort.
y It is the combination of automatic + Machine.
\rightarrow In this process machinary are used which are operated: through programms to do some useful work.
\rightarrow for example: Watch, metrorail, face unlock, void to talk etc.
- industrial flletomation:
room \quad mom
\rightarrow Industrial automation is the use of control system such as computer or robots, TLC, TLSI, scada etc for handling dizerent process \& machinary in an industry to replace a human being.
- Eldvantases $\frac{0}{2}$ educes haman involvement \& effort.
\rightarrow Increases production rate.
\rightarrow increase accuracy.
\rightarrow less time consumption.
\rightarrow avoid human error.
\rightarrow Reduces accident.
- Disadvantages : High machining setup rate. Hiahmaintenance cost.
$\rightarrow \rightarrow$ increases unemployment.
$\rightarrow \rightarrow$ Pollution is highly created.
$\rightarrow \rightarrow$ High energy consumption
\rightarrow High skilled operator.
- TYpes of Automation :
(1) Fined fflutomation)
(3) Programmable Automation.
(3) Flexible automation.

\rightarrow To minize the labour shortage.
\rightarrow To reduce routine manual is lorical cast.
\rightarrow To improve worker safety.
\rightarrow To improve product quality.
\rightarrow To reduce manufacturing lead time.
\rightarrow To accomplex process that cant be done manually.
\rightarrow To avoid the high cost of not automating.

(U.S MFG productivity \& $0 / P$ chart)
$<$ Numerical Control
-) Itis a form of programmable automation in which the process is e control by numbers, letters \& symbols.

0) In NC M/C the numbers from a programme of instructions elesicin for a particular Mob.
1) When Mob change the programme of instructions is also change. A 1) There are three important of NC system.
(1) programme of instructions.
(2) MC C control unit (MCU)
(3) Machine tool.
2) NC machines are also used in automatic industries for various operations like Milling, drilling, grinding, honning etc.

(1) set of programme or instructions $\frac{\rho}{0}$
-) Et typical desktop programme gives the instructions to the computers to perform certain functions. The programme of instructions of the NC M/C is the step by step set of instructions that tels the m / c what to do.
o) The set of instructions contains the following parts or elements,
(1) Part drawing.
(2) Written NC programme, Micro comp, tape
(B)

, tape reader \& controller.
tape reader \& controller $\rightarrow \mathrm{Nc}$
programing on on
tape
Position \& MCC control in NC Machine : rom m $\quad \mathrm{mm} \quad \mathrm{m} \quad m \mathrm{~mm}$
\rightarrow El group of devices, electrical, hydradic or numetic are used to control the position \& motion of the m / c to of. The most common types of control systems ave open loop system \& closed loop system.
open mop system: it is a control system that has no means of comparing of the $0 / 1$ with the I/P for control purpose. such that there is no feed back system.

\rightarrow The information stored in tape is decoded by the tape reader \longrightarrow Tapereader stored the information t til the M / C is ready to \rightarrow receive it. Tape reader converts the information into electrical \rightarrow pulses or signals which are sent to control unit.
\rightarrow The control unit in term energises the driving control uni
which actuates DC Motors to perform the desired function. \rightarrow Driving Motors mainly stepper motors are used in open loop system.
\rightarrow A presicion lead sareul coupled with the motor rotates causing the M/C table to slide.
closed loop system $\frac{A}{\circ}$
mm m rom

\rightarrow In close loop system along with the components of open loop system a feed back unit is added into the epctrical circuit.
\rightarrow A large reviety of feed back centers are available for comparing the actual table moment with the desired table movement.
\rightarrow In case there is an error the corrective signal is fed back to the driving Motor (Mainly DC servometery which makes necessary adjustment. to companisate the deviation. \rightarrow In closed loop Ne system the accuracy is very high such that the m / c table con slide with an accuracy of 0.0025 mm .
\rightarrow special motors called servomotors are utilized in closed loop system.
\rightarrow The motor types include $A C, D C$ \& Hydraulic servos.
\rightarrow Hydraulic servo motors are mainly wed for large NC Machines as their most power-ful.
\rightarrow The speed of AC or DC motor is variable \& depend upon the current passing through it.
\rightarrow Comparing the both control systems close loop control systems arp more preffer.
N/C Axis of Motion :m cm m mon
\rightarrow The location of a N/C tool at any pt of time is controlled by cartecian co-ordinate system. The system is composed of 5 directional lines ritually intersecting 90° with each other.
\rightarrow The 5 axes are known as $x, y \& z$ axis.

\rightarrow There are 5 types of Motion control of tools used in NC system:
(1) point to point.
(2) straight cut.
(3) contouring.
1/ point to point (PTP)
mom mm m
\rightarrow point to point system is also known as positioning System. \rightarrow it is used for operations that requér first movement to a point Followed by a manufacturing operation at that point.

$\rightarrow N C$ (Dill M/C is an example of pts system.
\rightarrow In these Machines after the drilling M / C is perform the tool is moved to the next location for the operation tiv the operations s are completed.
\rightarrow The PIP NC. MICs are the simplest \& least expensive \& are commonly used in drilling, boring, hole punching etc.
\rightarrow In this method the too mols in x wy axes simuntaneocesly. 2/ Straight cut $\frac{1}{\circ}$
mom m
\rightarrow In straight cat motion control system the toed moves parallel to one of the major axis at a desire rate suitable for machining.
\rightarrow It is quite appropriate for milling workpieces of rectangular configuration.

\rightarrow In this process no angular cats on the work piece is possible.
\rightarrow Any NC MAC toe capable of straigh cut movements can perform point to pt operation alpo.
3) contouring wy stem
\rightarrow It is also known as contineous pout system.
\rightarrow The tool follows the desired shape since the commands as far more destrictive than for the PLP system.
 precisely is control as in all planes.
\rightarrow All ames of motion might more simintaneously each one at a 5 different speed while the speed may be changed even with in the path bet two given points.
\rightarrow Contouring NC M/Cy have a complex circuitry/design which can feed \& read information of the tool that are normallis programmed with the hesp of computers. Thix system is commonly used in milling Machines,
\rightarrow Tooll Positioning Mode $\frac{\square}{O}$ mom mom

* *\#bolute sustem $\frac{B}{0}$
monm comm
\rightarrow fll absolute sustem is one in which all moving commands are referred to want refference point which is in origin \& it is called Zero point.
\rightarrow EIII position command are given as absolute distance from that \Rightarrow zero point.
\Rightarrow The zero point may be defind as the point outside the u / p or at the corner of the w/p.
\rightarrow If a fixture is used it could be a point on the finture \Rightarrow or on the M/C table.
$\Rightarrow \rightarrow$ It is extimated that considerably more than 90% of point
\Rightarrow to point NC machines use absolute proaramming.
\Rightarrow *y nocremental sustem \div
$\Rightarrow \rightarrow$ Alln meremental system is one in which the refference point \Rightarrow to the next instruction is the end point of the preciding
\Rightarrow operation.
$\rightarrow \rightarrow$ Each Dimensional data is apply to the system as a
\rightarrow distance inerement majored from the preciding point at.
? which the axis of motion was present.
\rightarrow ancremental controls are generally low cost to bill but they
? are not ofter uxed from controlling point to point M/C tools,
\rightarrow one major drawe bactr of ineremental system is that if one incremental movement is inerror, all over

Subsiquent movements become error.

Ne part programming !
mm mm тоmmm

1) Manual Part programming.
2) computer assisted programming.
3) Manual data input (MDI).

1-Maneal port programming $\frac{1}{3}$
\rightarrow In manual part programming the data required for machining a part is written in a standard format on a special manuscript.
\rightarrow The manuscript is a planning chart or a list of instructions which describes the operations to be done.
\rightarrow it is generally, used for path to be produce on a point to point machining.
\rightarrow Tool part calculations are very simple in this method. when the complete programme is taped all the instructions in the for of cores are checked for accuracy.
\rightarrow Here a yet of instructions is called N/C block. A block is a complete line of information to the NC.M/C which consist of the block number, some codes (G-code, mode, T. code etc) \& finally at the end it is marked at the end of the block.
$\rightarrow \rightarrow$ for ex: N0030, or90 G00 $x-3.2, y-4.2$. S 1000 ;
Sequence number (recode) $\stackrel{i}{\text { norm }}$
*) It identifies the block.
*) It increases sequencially through the programme.
Properties codex (G-code) \div fromm cm cmom
\rightarrow If informs the controller what fare of motion or action is to be carried out.
\rightarrow The mode of moment is indicated by the numerical valve following the y-address.
\rightarrow in general a μ-code is typed at the beginning of the block after N-code, so that it can set the control for a particular mode of action.
\rightarrow \& -code is of two types.
(a) Modal.
(b) Mon modal.
\rightarrow for modal type 9 -code specification will remain in effect for all subsequent block unless replaced ky another modal a-code.
$\rightarrow \rightarrow$ For non. modal dupe μ-code specification will only affect the block in which it contains.
\rightarrow for example \div
HO_{2} : That the next motion will be circular interpuration in clock wise. direction. HO_{2} is modal type.
Feed rate (f-code) : rom m m mm
\rightarrow It indicates the rate at which the spindle moves along a programming axis. in english system the feed rate is Inch $/ \mathrm{min}$.
\rightarrow The feed rate is expressed in $2 n \mathrm{ch} / \mathrm{min}$ in metric system. It is $\mathrm{mm} / \mathrm{min}$. The feed rate is a modal code \& it remains in effect in subsequent block unless a nee ' F ' code is replaced on the old one. spindle speed $(3-c o d e):-$
rm arrow cmm erma

It is specified the spindle speed (rotation per min) at which the spindle speed. Al numerical valve upto A digit is enter the following address Ss:
\rightarrow for ex; S 1500 denotes that the spindle speed is set that 150 RPM.
\rightarrow The s code is also a model code.
Tool number $\%$ (T-code)
m rom mm
\rightarrow it indicates which tool is to be usual during the operation.

Miscellaneus code (M-code) \div
rmmomm mm) $\quad \mathrm{mm}$
\rightarrow It exicutey various Numeric al control ($N C M / C$) function that are not related to dimensional or axis moxement.
\rightarrow The are classified into 2 catagovies
(i) The first catagory consist of those which exicute with the start of motion described in a block.
(1) The second category consist of those which exicute with the \rightarrow completion of motion described in the block.

Machine zero:
\rightarrow Each CNC MMC has a built in location that is called m/c zero. This pt is typically located at the farthest tue e direction along the $x, y \in z$ axis.
\rightarrow it can't be changed by anyone after it leaves the original. manufacturer.

Work zero:- Work ' O ' is normally set at the front race \& centre of the Mob. Here it is shown two axis $\mathrm{m} / \mathrm{c} x$-axis \& $=$ z-axis (longitudinal) \& the both axis should be made be ' 0 ').
Tool offset : T . mom roe word offset prefers to the allowance made by the CNC m/c for the diameter \& length of the tool to cut the Yob.
\rightarrow Tool offsets are the set of values that move the contrept of the cutter to the correct position to cutting a w/p
to using a specific tool.
Toul zero :
mon m
\rightarrow The zeropoint set by the tool above the w/p is known as tool zero.
\rightarrow It is variable for different c / p.
*) Simple part prognaune for Inathe an mun man man min mam

00005
T0000
en 28 UO WIO
TO3O3
9r92 MO4 S850
$096 S 100$
9100 22.0
2100×25.5
M07
$071 \cup 0.5 R 0.5$
G71 P10 Q 20 v0.1 70.3
N1O GOI $x 12.0$
Go1 $x 13.988 z-2.0$
$8101 z-20.0$
er01 x 14.011
mol z-27.0

- Mol x 18:0
- N20 MO1 z-32.0~
, MOO Z2.0
, M00 x 25.5
, ll 97 T0000 mog
, a 28 vo 100
, NITOZO3
M92 MOH S 850
$G 70$ P10.Q $20 \quad 70.1$
$2100 \nsim 2.0$
er 00 x 25.5
er at T0000 moq
M 28 vove
$m 05$
m 50
$\%$
\div CNS:
\rightarrow CNC MIC is control one machine.
\rightarrow CNIC computer is an integrated port of the machine.
\rightarrow CNC computers are having less processing power.
\rightarrow CNC saftwere control only one machine.
\rightarrow veriedy of products can be produced in a definite time.
\rightarrow Less production rate as compared to DNC.
$\because \underset{\text { mN }}{\circ}$
\rightarrow DNNC computer control more than \perp M/C using local networking
\rightarrow DNC computer is located at a distance from the m / C.
\rightarrow DNC computers are having high processing power than CNC. (micro processer are used).
\rightarrow (DNC software considers management of information through to a group of M / C.
\rightarrow unique products can be produced in the diffine time. \rightarrow High production rate as compared to CNC.

\rightarrow It is the capability of the system to modify its own operation to achieve the best possible more operation. \rightarrow et general defination of adaptive control emplize that an adaptive control must be capable of performing the.
following function, for ext feed back control system, Feed forward control system etc.

ROBOT TECHNOLLOMY momism common
*) Robot is an any automatically operated machine that is used to replace the human effort.

* $\#$ robot is an artificial agence, that act like human beings.
* Robots are usually machines control by a computer programme or electronic circuity. They may be directly control by humans. Most robots do a specific Job \& they don't aluages look like human.
\rightarrow Robotics: int is the engineering dealing with the design, construction \& operation of robots.
\rightarrow Industrial Robots:mommsen
\rightarrow FlD industrial robot is a robot system is used for manufacturing, Industrial robots are automated, programmable \& capable of movement mor than 5-axis.
\rightarrow Typical application of robots in industry include.
\rightarrow Welding
\rightarrow painting
\rightarrow Assembly/ dis assembly.
\rightarrow plick \& place for printed circuit board, packing \& levelling.
\rightarrow Inspection \& quality control.
\rightarrow All these process are dawn with high speed \& precission
\rightarrow They can also assist in material handing.
\Rightarrow Field of Application of Robots:
(1) space industries Robotics:mm moor
\rightarrow Thee research area space robotics decl with the development of intelligent robots for extraterestrial explorations focusing on
(i) Re configurable systems for planetary exploations.
(ii) A 2 Best methods for aufonomus navigation \& mission planning =
in unknown terrain.
(iii) Image evaluation \& object recosnizafion.
(iv) MI best support systems for scientific experiments.
(2) Under water Robotics :-
m mon mors
\rightarrow This area deals with the development \& realization of AI method in under water systems.
\rightarrow The main point of research are
(1) Development of systems for user support in remof control under water vehicles, employing virtual imation meshody.
(ii) Under water applications particularly with state of the art sencer technology such as visual.
(iii) Image evaluation \& object recognisation with module \& infeligent under water eameray.
(iv) Design $\&$ control of autonomos under water vehicles.
(v) selectric mobility.
(vi) Production \& consumer
(v) Allgricultral robotics.
(3) Electric Mobility:-
prom crmm^{2}
\rightarrow In the field of electric mobility we are testing concepty ofor electric vehicles, battery charge technologies \& the collection vehicle, data.
\rightarrow We are creating models for intelligent, environmently sound \& integrated urban mobility.
\rightarrow our research focuses around:-
(A) Development \& demonstration of innovative vehicle concepts.
(B) Design of new approaches to mobility \& traffic control, application support, technology int egration.
(c) Data collection by fleet tests with technologically different electric vehicles.
(ID) Coordinating of the regional project office of the model region electric mobility Bremen/ardenburg.

\rightarrow In this area, robots are developed to act autonomouly \& or support humans in intralogistic, industrial \& consumer scenarios.
- Our research focuses around the neal robotics for the industries 4.0
\Rightarrow \& beyond :
(A) Intelligent human-robot collaboration wing hybrid teams for production environments.
(B) Development of cognitively enhanced robot capabilities for - Flexible manufacturing
(c) Modular, novel \& safe robots for human-robot collaboration.
(D) Autonomaes mobile manipulation for intralogistics \& manufacturing scenarios
(E) Innovative robotics solutions for inspections.
(5) Search \& Rescue CSAR) \& security Robotics: mom comm mm mom rom
\rightarrow In this area robots will be developed to support rescue \& security personnel. Main pointy of our research are:-
(A) Development of highly mobile platforms for indoor \& outdoor applications.
(IB) Development of autonomous systems that are able to identify potential victims (SAR) or intruders (security).
(C) Imbedding for robot systems into existing rescue \& security infrastructures.
(D) Autonomous navigation \& mission planning.

Assistance-\& Rehabilitation systems -
merriam mi morrombly
\rightarrow This field deals with robotic systems that can support humans in complex, exhausting or often repeated tasks.
\rightarrow Application areas are both help during activities of everyday life. \& medical rehabilitation.
\rightarrow support can either take place using systems the hamal is wearing line.
\rightarrow exoskeletons or orthoses, or by service robots performing the task.
cove topics include :-
m am nun
\rightarrow conselt development, design \& construction
\rightarrow Intelligent harduare. system architectures.
\rightarrow softwere architectures.
\rightarrow embedded biosignal analysis, ex: using information from:-
-) Muscle [AMa)
-) eye (eyetracking, EOM)

1) Or from brain activity (EED)
-) Fusion of elitterent sensors,
\rightarrow direct online signal processing (hard \& softweere)
\rightarrow Robust learning systems capable to adapt.
\Rightarrow Joint communication layers for better human $-m / c$ interaction. \rightarrow Automonously acting system.
\rightarrow Assist - as - needed.
(7) Agricultural Robotics:
\rightarrow We develop robots for agriculture applications \& transfer methods \& algorithms from robotics to convectional agricultural machines.
\rightarrow Our objective to increase the performance of $m / c s$ \& processes \& to reduce resource consumption af the same time.

Our research is focoused on technology applications used in the cultivation of land. primary research topics are \div
(A) Methods for autonomus planning \& navigation of outdoor machinery
(B) Methods for environment recognition in agricultural machinery control (C) Methods of infield logistic \& to optimize cooperation \& resource. consumption bet" multiple agricultural machines.
(D) Interoperability at the level of communication, processes \& knoceledge processing.
\#\% Robot configuration $\frac{0}{0}$ prom como
\rightarrow The various types of movements, coordinate systems \& degree of freedoms maintain during the design of a robot is known as configuration.
TYPES \div cartesian configuration
polar configuration
Cylindrical configuration
Joined arm configuration
SCARA [selective complained assembled robot arm]:
$[Y L S N / P L C]$
(Delta

$$
[Y \perp S \Phi / P L C]
$$

6-Axis.
cartesian configuration:-
\rightarrow In this configuration there are I orthogonal direction g $x, y \& z$.
$\rightarrow x$ coordinate axis may represents lept \& right motion
\rightarrow y coordinate axis may represents forward \& backward san^{c}.
\rightarrow Ir coordinate axis represents up \& down Function.
\rightarrow For en: Over head chain movement
AdV \div m
\rightarrow Work involve can be increased by travelling along x axis,
\rightarrow Linear movement \& simple control.
\rightarrow High degree of accuracy \& repetability due to their structure.
\rightarrow Can carry heavier loads.
(Disady:-
\rightarrow Movement is limited to only one dire at a time $\underset{\text { ama }}{\text { application }} \div$
\rightarrow pick \& place
\rightarrow assembly \& subassembly
\rightarrow Necluer material Handling
\rightarrow Welding

Dis adv \because mos
\rightarrow Repetability \& accuracy are lower in the dire of rotary motion.
\rightarrow It requires more complicated control system.
App ${ }^{m} \stackrel{0}{\circ}$ Assembly, coating app", diecasting, foundary \&, +urging app", M / C loading \& unloading apply".
Polar configuration $:$
mom
\rightarrow It uses a arm that can be raised or lower about a horizontal E pivot.
\rightarrow The pivot is mounted on a rotating base.
\rightarrow The various Joints provide the robot withe capability to move its arm with in a sperical space\& hence it is also called as spherical cooridinat robot.
\Rightarrow It has one linear \& two rotary motions.
\rightarrow The animate 2000 series is an ex of spherical robot.
Adv:
\rightarrow Larger work envolve that the cylindrical configuration
\rightarrow vertical structure conserves les space
(1) is ad: Repetability \& accuracy are also lower in rotary motion.
\rightarrow It requires more sofisticated control system.
Application -
chromo
\rightarrow Die costing
\rightarrow Foreging
\rightarrow glass handling
\rightarrow Injection moulding eft.
\div ROBERT ANATOMY:
Introduction: -An industrial robort ix a general purpose, programmable $\overline{\mathrm{m} / \mathrm{c} \text {. It possesses some atmospheric characterstics, ice human like }}$ chavactensticy that resemble the human physical structure. The robots also rexpond to sensory signally in a manner that is similar to humans. Anthropomorphic charactersties such as mechanical arms are used for various industry tasks. Sensory preceptive devices such as sensory allows to the roboty to communicate \& interact with other machines \& to take simple decisions. The general commercial \& technological adv. of robots are listed beloue.
\rightarrow Robots are good substitutes to the human being in hazardous or uncomfortable work environments :
$\rightarrow A$ Robot performs its work cycle with a consistency \& repetability which is difficult for human beings to attain over a long period of contineous working.
\rightarrow Roboly can be programmed. When the production run of the current task is completed, a robot can be reprogrammed \& equipped with the necessary tooling to perform an altogether different task.
\rightarrow Robots can be connected to the computer system \& Other robotics

- Systems. Now a days cobols can controlled with wire less control \rightarrow technologies. This has enhanced the productivity \& efficiency of - automation inclustry.
, \% Robot anatomy $\&$ related attributes.
- Pointy \& Links: The manipulator of on industrial robot consist
, of a series of taints «linkx. Robort anatomy deals with the steady
? of different Joints \& link \& other aspects of the manipulatory
- physical construction. A robotic Joint provides relative motion
- bets two limes of the robot. Fath Joint or axis, provides a
- Certain degree- of n freedom ($d \circ f$) of motion. In most the cases

3 only one-degree-of-freedom ix associated with each Joint.
\rightarrow Therefore the roboly complexity can be classified according to the total no of degrees - of-freedon they posses.
tach Point is connected to two links, $i / p \operatorname{link} \&$ O/P link. Joint provides controlled relative movement bet a the I / P ? link \& output link. A robotic link is the rigid component of the robot manipulator. Most of the robots are mounted upon a stationary base, such as the floor. From this base, a Joint-link numbering scheme may be recognized as shown the beloue fig. The robotic base \& its connection to the first. Joint are termed as link-0. The first Joint in the sequence is Joint-1. Hink-0 is the input link for Joint -1, while the O / P link from Joint-1 is link-1 which leads to Joint-2. Thus link-1 is, simontaneourly, the op link for Joint-1 \& the mut link for Yoint-2. This Moink-link-numbering scheme is further fallowed for all Joints \& link in the robotic system.

(Joint-link scheme for robot manipulator)

* Nearly all industrial robots have mechanical Joints that can be classified into following five types as shown in below fig.

(a) Linear Joint

mint link
(c) Rotational Point

(d) Twisting Point
output in
en put live

(e) Revolving Joint
(a) $\underset{\text { Linear }}{\text { Point (}} \mathrm{H}$ - Joint)
\rightarrow This relative movement bet the input links \& the output link is a translational sliding motion, which the axis of the two links being parallel.
(b) Orthogonal Joint (U-Joint)
momus mom
This is also a translation sliding motion but the Input or outpuff links are perpendicular to each other during the move.
(c) Rotational Joint (R-Joint)
ormomom mon
\rightarrow This type provides rotational relative motion, with the axis of rotation perpendicular to the axes of the input \& output links.
(ID) Twisting Joint (T-Joint)
\rightarrow This Joint also involves rotary motion, but the axis of rotation $=$ is parallel to the axis of the two links.
(e) Revolving Joint (Typev-Joint)
\Rightarrow Th this type, axis of input link is parallel to the axis of rotation of the Joint. However the axis of the output link is perpendicular to the axis of rotation.
\therefore FLEXIBLE MANUFACTURRRNG
\rightarrow in fms the term flexibility means $8 Y S T E M \div$ that the machine is above to process a variety component without having to adjust machine setup or too changing.
- Flexible manufacturing system is characterised by the
- Following. main components:
(1) Two or move work stations with computer contrasted machine tool.
for example $\frac{{ }^{\circ}}{\circ}$ CNC Machine.
(2) An automated material handling system for moving the nook in process.
(5) Eflvanced mechanism for transferring work in process between the m / c tool \& material handling system.
(4) storage by an automated storage \& retrival system of work in process \& tooling.
(5) Central computer control of the entire process s.
$\rightarrow \rightarrow$ flexible Manufacturing is a highly automated group - technology (2T machine cell consisting of a group of
\rightarrow processing work stations, interconnected by an automated
- material handling \& storage system \& controlled by a
\rightarrow distributal computer.

2) Classification of Flexible manufacturing:mмиumn in mm mumum \rightarrow It can be classified as according to the number of m / c in the \leqslant system
(1) Single m / c cell.
(2) Flexible manufacturing cell.
(5) Flexible manufacturing system.

single M / C cell (SMC): $\mathrm{m} \quad m \mathrm{~m} m$
\rightarrow A single m / c cell consist of one sAC machining centre. combined with a parts stoarge system on atteneded operation. \rightarrow Completed parts are periodically unloaded on the storage unit a neva, rave materials are loaded into it.

$m m m m$
\rightarrow It consist of 2 or 3 processing stations mainly CNC machining centers \& material handling, storage system. \rightarrow The park handling system is connected to the loading \& unloading station.
,
flexible manufacturing system (fMS):-
\rightarrow A FMS has 4 or more processing work stations connected - mechanically by the storage \& material handling system \&

- loading or unloading system.
- NEED OF FMS -
- rom m ma.
\rightarrow External changes such as change in product design \& production,
- system.
\rightarrow optimising the manufacturing cycle time.
$\rightarrow \rightarrow$ Reduced production cost.
$\rightarrow \rightarrow$ Overcoming internal changes live breakdown eft.
$\rightarrow \rightarrow$ To reduce inventry cost, direct labour cost eft.
$\stackrel{\rightharpoonup}{\rightharpoonup} \rightarrow T_{0}$ increase m / c utilization.
n-1~-1 amon?

CAM, CAD/CAM, AND CIM

We have briefly defined the terms CAM, CAD/CAM, and CIM in our introduction. Let us explain and differentiate these terms more thoroughly here. The term computer integrated manufaclUrlng (CIM) is sometimes used interchangeably with CAM and CAD/CAM.

Although the terms are closely related.our assertion is that CIM possesses a broader meaning than does either CA M or CAD/CAM

Computer Aided Manufacturing

Computer-aided manufacturing (CAM) is defined as the effective use of computer technology in manufacturing planning and control. CAM is most closely associated with functions in manufacturing engineering, such as process planning and numerical control (NC) part programming. With reference to our model of production in Section 13.2, the applications of CAM can be divided into two broad categories:(1) manufacturing planning and (2) manufacturing control. We cover these two categories in Chapters 25 and 26, but Jet us provide a brief discussion of them here 10 complete our definition of CAM.

Manufacturing Planning. CAM applications for manufacturing planning are those in which the computer is used indirectly to support the production function, but there is no direct connection between the computer and the process. The computer is used "offline" to provide information for the effective planning and management of production activities. The following list surveys the important applications of CAM in this category:

Computer-aided process planning (CAPP). Process planning is concerned with the preparation of route sheets that list the sequence of operations and work centers required 10 produce the product and its components. CAPP systems are available today to prepare these route sheets. We discuss CAPP in the following chapter.

Computer-assisted NC part programming. The subject of part programming for NC was discussed in Chapter 6 (Section 6.5). For complex part geometries, computer assisted part programming represents a much more efficient method of generating the control Instructions for the machine tool than manual part programming is.

Computerized machinability data systems. One of the problems in operating a metal cutting machine tool is determining the speeds and feeds that should be used to machine a given work part. Computer programs have been written to recommend the appropriate cutting conditions to use for different materials. The calculations are based on data that have been obtained either in the factory or laboratory that relate tool life to cutting conditions. These machinability data systems are described in.

Development of work standards. The time study department has the responsibility for setting time standards on direct labor jobs performed in the factory. Establishing standards hv direct time study can be a tedious and time-consuming task. There are several commercially available
computer packages for setting work standards. These computer programs 'use standard time data that have been developed for basic work elements that comprise any manual task. By summing the limes for the individual element, required to perform a new Job, the program calculates the standard lime for the job. These packages are discussed in

Cost estimating, The task of estimating the cost of a new product has been simplified in most industries by computerizing several of the key steps required to prepare the estimate. The computer is programmed to apply the appropriate labor and overhead rates to the sequence of planned operations for the components of new products. the program then sums the individual component costs from the engineering bill of materials to determine the overall product cost.

Production and inventory planning. The computer has found widespread use in many of the functions in production and inventory planning. These functions include: maintenance of inventory records, automatic reordering of stock items when inventory is depicted. production scheduling, maintaining current priorities for the different production orders, material requirements planning, and capacity planning. We discuss these activities in Chapter 26.

Computer-aided line balancing. Finding the best allocation of work elements among stations on an assembly line is a large and difficult problem if the line is of significant size. Computer programs have been developed to assist in the solution of this problem (Section 17.5.4).

Manufacturing Control. The second category of CAM application is concerned with developing computer systems to implement the manufacturing control function. Manufacturing control is concerned with managing and controlling the physical operations in the factory. These management and control areas include:

Process monitoring and control. Process monitoring and control is concerned with observing and regulating the production equipment and manufacturing processes in the plant. We have previously discussed process control in Chapter 4. The applications of computer process control arc pervasive today in automated production systems. They include transfer lines. assembly systems. NC, robotic>. material handling. and flexible manufacturing systems. All of these topics have been covered III earlier chapters.

Quality control: Qua1ity control includes a variety of approaches to ensure the highest possible quality levels III the manufactured product. Quality control systems were covered in the chapters of Pan IV.

Shop floor control. Shop floor control refers to production management techniques for collecting data from factory operations and using the data to help control production and inventory in the factory. We discuss shop floor control and computerized factory data collection systems in Chapter 26.

Inventory control. Inventory control is concerned with maintaining the most appropriate levels of inventory in the face of two opposing objectives: minimizing the investment and storage costs of holding inventory and maximizing service to customers. Inventory control is discussed in Chapter 26.

Just-in-time production systems. The term just-in-time refers to a production system that is organized to deliver exactly the right number of each component to downstream workstations in the manufacturing sequence just at the lime when that component ts needed. The term applies not only to production operations but 10 supplier delivery operations as well. Just-in-time systems are discussed in Chapter 26.

CAD/CAM

CAD/CAM is concerned with the engineering functions in both design and manufacturing. Product design, engineering analysis, and documentation of the design (e.g.. drafting) represent engineering activities in design. Process planning, NC part programming, and other activities associated with CAM represent engineering activities in manufacturing.

The CAD/CAM systems developed during the 1970s and early 1980s were designed primarily to address these types of engineering problems. In addition, CAM has evolved to include many other functions in manufacturing, such as material requirements planning, production scheduling, computer production monitoring, and computer process control.

It should also be noted that CAD/CAM denotes an integration of design and manufacturing activities by means of computer systems. The method of manufacturing a product is a direct function of its design. With conventional procedures practiced for so many years in industry, engineering drawings were prepared by design draftsmen and later used by manufacturing engineers to develop the process plan. The activities involved in designing the product were separated from the activities associated with process planning. Essentially a two-step procedure was employed. This was time-consuming and involved duplication of effort by design and manufacturing personnel. Using CAD/CAM technology, it is possible to establish a direct link between product design and manufacturing engineering. ln effect, CAD/CAM is one of the enabling technologies for concurrent engineering (Section 25.3). It is the goal of CAD/CAM not only to automate certain phases of design
and certain phases of manufacturing, but also to automate the transition from design to manufacturing. In the ideal CAD/CAM system, it is possible to take the design specification of the product as it resides in the CAD data base and convert it into a process plan for making the product, this conversion. being done automatically by the CAD/CAM system. A large portion of the processing might be accomplished on a numerically controlled machine tool As part of the process plan, the NC part program is generated automatically by CAD/CAM, The CAD/CAM system downloads
the NC program directly to the machine tool by means of a telecommunications network. Hence, under this arrangement, product design, NC programming, and physical production are all implemented by computer.

Computer Integrated Manufacturing

Computer integrated manufacturing includes all of the engineering functions of CAD/CAM, but it also includes the firm's business functions that are related to manufacturing. The ideal CIM system applies computer and communications technology to all of the operational functions and information processing functions in manufacturing from order receipt, through design and production, to product shipment. The scope of OM, compared with the more limited scope of CAD/CAM, is depicted in Figure 24.7.

The CIM concept is that all of the firm's operations related to production are incorporated in an integrated computer system to assist. augment. and automate the operations. The computer system b pervasive throughout the firm, touching all activities that support manufacturing. In this integrated computer system, the output of one activity serves as the input to the next activity, through the chain of events that starts with the sales order and culminates with shipment of the product. The components of the integrated computer system are illustrated in Figure 24.8. Customer orders are initially entered by the company's sales force or directly by the customer into a computerized order entry system. The orders contain the specifications describing the product. The specifications serve as the input to the product design department. New products are designed on a CAD system. The components that comprise the product are designed, the bill of materials is compiled, and assembly drawings are prepared. The output of the design department serves as the input to manufacturing engineering, where process planning. tool design, and similar activities are accomplished to prepare for production. Many of these manufacturing engineering activities are supported by the (1M system. Process planning is performed using CAPP. Tool and fixture

Time : 3 hours

Answer any five questions

Figures in the right-hand margin indicate marks

1. (a) What is LASER?
(b) Explain the function of dielectric fluid in EDM. Name the common dielectric fluids used in EDM.
(c) Explain the need for non-traditionalmachining processes.
2. (a) List the common abrasive powders used in AJM. (Abrasive Jet Machining).
(b) Write down the area of applications and limitation of AJM Process.

(2)

(c) Briefly describe the principle of EBM with neat sketch.
3. (a) Define CAD, CAM and CIM. 2
(b) What is an AGVS ? What are its functions? 5
(c) Discuss of different types automation. Illustrate with the help of a diagram to show the relationship of different types of automation system.
4. (a) Define flexible manufacturing system. 2
(b) What are the advantages and disadvantages of FMS ? Describe.
(c) Differentiate between NC, CNC and DNC systems.
5. (a) What are the tool positioning modes in NC programming?
(b) Give the benefits of a CAD system.
(c) If you are to drill 3 holes (A, B and C) of equal diameter in a plate, show the difference
of part dimensioning in absolute and incremental systems. The centre of holes are; $a(3,5) B(15,20), c(20,20)$.
6. (a) Define Robot. 2
(b) Sketch and discuss the various Robot grippers.
(c) Describe the main components of Robot with neat sketch.
7. (a) Define G-code and M-code.
(b) Classify the different Non-conventional Machining Processes.
(c) Identify different components of FMS. Describe them in brief.

Eldvanced Manufacturing (se t-2) *y Ells all the questions.

- (1) What is Non -convectional M / C process \& give example.
(2) What is automation.
(3) What is NC aries of Motion.
(4) What is Mode \& encode.
(5) What is neon zero \& tool zero.
(B) List the common abrasive powders cured in AIM.
(7) Difference bet CNC \& DNC.
(8) What is cartesian configuration.
(a) What is Robert anatomy.
(ii) In Robert anatomy what are the types of Joint,
* EINS RID five
-(1)(Describe the leaser beam machining process.
- (2) Write dozen the need of automation.
((3) What is incremental system explain it.
\rightarrow (4) Difference bet CNC \& DNC.
(5) Define Robort configuration \& its types.
(a) classify flexible manufacturing system.
-(1) Describe Adv, Dis adv of \& uses of AJM.
\rightarrow (8) Prove the benitits of CAD system.
- Cling cAnc 3
(1) What are the field of appin of 10×3
(0) Describe position \& M / C control in NC M/C with neat sketch.
(5) Describe PAM process with neat sketch.
(4) Describe the Main Components of robot with sketch.

