Materials For concrete.

$$
\begin{aligned}
\text { Concrete }=\text { Cement } & + \text { Sand }(F \cdot n)+\text { Aggregates (E. } A) \\
& + \text { Water }+ \text { Admixtures }
\end{aligned}
$$

Note
\rightarrow The mixture of cement and water is called paste.
\rightarrow The function of paste is to bind sand and aggregates particles by the chemical process of hydration
\rightarrow It also fills the voids between sand and aggregate particles.

* Cement:-

Raw materials for cement

Calcareous materials.
egg.- Lime stone

- Chalk
eg- clay
- marl.
- shale.
\rightarrow Three processes of cement manufacturing.
(1) Wet process
(2) Dry process
(3) Semi-dry process
\rightarrow These process are involved three distich operation \rightarrow mixing of raw materials
\rightarrow Buning.
\rightarrow Grinding.

Mixing of Raw Materials
\downarrow
Rotary kiln upperend
temperature rise
convert small lumps (Noduls)
\downarrow
temperature up to $1500^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$
noduls converted into small hand bales
(clinkers).
(srice-3mm to 20 mm)
put at ball mills and tube mills. at griding time 2 to 3% gypsum added. to prevent flash-setting of the cement.
\downarrow
finely stored in silos.
and manually pocked by machine in bage.
\rightarrow Each bag of cement contains 50 kg or $0.035 \mathrm{~m}^{3}$

* Oxide composition of OPC.

Lime, Ca
Silica, SiO_{2}
Alumina, $\mathrm{Al}_{2} \mathrm{O}_{3}$
Tron Oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$
Magnesia, Mg O
Alleathes. $\mathrm{K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$
Sulphate. SO_{3}
content $\%$,

$$
\frac{60-67 \%}{17-25 \%}
$$

$$
3-8 \%
$$

$0.5-6 y$
$0.5-4 y$.
$0.3-1.2$
$1.0-3.0$

* Bogue's compounds. Abbreviation Name
pert by mass in cement
$\mathrm{C}_{3} \mathrm{~S}$ Tricalium silicate
$C_{2} 5$ Dicalcium silicate

$$
\begin{aligned}
& 30-50 . \\
& 20-45
\end{aligned}
$$

$\mathrm{C}_{3} \mathrm{~A}$ Tricalcium aluminate
$8-12$
$c_{4} A F$ Tetrocalcium aluminoferrite $6-10$

* Properties of Bogue's compounds.
$C_{3} 5$: - It is responsible for early strength.
- First 7 days strength is due to $c_{3} s$.
- It produces more heat of hydration.
- A cement with more cos content is better for cold weather concreting.
C2S: - The hydration of $C_{2} S$ start after 7 days.
- It gives strength after 7 days.
- $C_{2} S$ hydrates and hasdens slowly and provides much of the ultimate strength
- It is responsible for the later strength of concrete
- It produces less heat of hydration.

C3A: - The reaction of $C_{3} A$ with water is very fast may lead to an immediate stiffening of paste, and this process is termed as flash set.

- To prevent this flash set, 2 to 3% gypsum is added at the time of grinding the cement clinkers.
- The hydrated $C_{3} A$ do not contribute to the strength of concrete.

CHAT: - $C_{4} A F$ hydrates rapidly.

- If does not contribute to the strength of concrete.
- The hydrates of $C_{n} A F$ show a comparatevely higher resistance to the sulphate attack than the hydrates of $C_{3} A$.
* Hydration of Cement
\rightarrow When water is added to cement, ingredients of cement react chemically with water and. form various complicated chemical compounds, The chemical reaction that take place between cement and water is reffered as hydration of cement.
\rightarrow An hydrous cement does not bind fine and coarse aggregate.
\rightarrow It acquires adhesive property only when mix with water.
\rightarrow The silicates $\left(\mathrm{C}_{3} S, C_{2} S\right)$ and aluminate $\left(C_{3} A\right)$ of cement react with water and form hydrosilicates and hydro aluminates.
\rightarrow There products are thick and sticky. It is called gel.
\rightarrow Gel possess adhesive property and binds aggregates and sand together.
\rightarrow It also fill the voids between sand if aggregate.
* Water requirements for hydration
$\rightarrow 23 x$ for Cos and CoS
$\rightarrow 157$ for bound wiser
\rightarrow Total 38\%. of water by weight of cement is requot For complete hydration.
\rightarrow If less than $38 y$ of water io wad than strength of concrete will be reduced.
\rightarrow If move than 38% of water uned, the mare will be the andenirable copiltany cavities.
* Heat def Hydration
\rightarrow The reaction of cement with water is exothermic The reaction librates a consielerable quantity of heat

(i) Setting is the term uncel to describe the stiffening of the cement pate
(2) It refers to change from a fluid to a rigid state

Hardening of cement
(1). Husdering revers to the gown of strength of set cement paste
(2) If redden to formation of solid man pescescing good comprevaive shays

* False set:r crment and water को जब हम mix करते है उसकी कुछ ही समय में shiff हो जाता है उसी को false set कहते है।
* Types of cement
(1) Ordinary portland (ement (OPC)
(1) 33 grade $O P C$ - IS 269:1989
(11) 43 11 11 - Is 8112:1929
(iii) 53 "11 - IS 12269: 1987
(2) Rapid Hardening evement
(3) Extra Rapid Handening of cement
(4) Quik setfing cement
(5) Low heat cement
(6) Suphate Resisting cement
(7) Super sulphate cement
(8) Portland Pozzolon a cement
(9) Portland slag cement
(IV) Coloured tement (white cement)
(III) Hydrophobic cement
(12) Air Entraining cement
(13) Masonary cement
(14) Oil well cement-
(15) Expansive cement
(16) High Alumina Cement
(17) Concrete sleeper Grade cement
(18) waterproof Cement
(19) Rediset cement.
(20) Very high strength cement
(1) Ordanary port land cement

33 grade $\rightarrow \quad 33 \mathrm{~N}_{2} \rightarrow \mathrm{~mm}^{2}$ days mimimen compraive
33 grade $\rightarrow 33 \mathrm{~N} / \mathrm{mm}^{2}$
$4311 \rightarrow 43 \mathrm{~N} / \mathrm{mm}^{2}$
$53 \mathrm{H} \longrightarrow 53 \mathrm{~N}^{2} / \mathrm{mm}^{2}$
uses
\rightarrow For general concrete construction when there is no exposure to sulphate in the soil or in the ground water.
(2) Rapid Handening cement
\rightarrow In pre-fabricated concrete construction
\rightarrow For road repair works
\rightarrow where formwork is required to be removed early for re-use elsentrere.
\rightarrow In cold weathering concreting.
\rightarrow wall sealing etc.
(3) Extra Rapid Hardening cement
\rightarrow In cold weathering concreting
\rightarrow It is suitable where a very high early strength is required.
(4) Quick setting cement.
\rightarrow Under water construction
\rightarrow Grouting operation.
(5) Low heat cement
\rightarrow Mass concrete construction
\rightarrow Resisting to sulphate attack
\rightarrow Hot weathering concreting
(6) Sulphate Resisting cement-
\rightarrow It is used in marine condition.
\rightarrow sewage treatment plant
\rightarrow chemical factory.
(7) Super Sulphate cement
\rightarrow murine condition
\rightarrow RCC piper
\rightarrow Mass concreting
(8) Portland Pozzolona Cement
\rightarrow For hydraulic structure.
\rightarrow For marine structure
\rightarrow For sewers and sewage dispusul work
(9) Portland slag element
\rightarrow For mass concrete
\rightarrow For marine structure.
(10) Coloured cement (white cement.)
\rightarrow To fill joints of glazed tiles in W.C, bathrooms, kitchen etc.
\rightarrow To fill joints in flooring.
(iii) Hydrophabic cement
\rightarrow D. will imponve the wnerkability of cemureb.
(11) Air Eintraing Cement-
\rightarrow It produce hght weight concrete
(13) Manonary cement
\rightarrow Thas cement useal as ordinum Portland coment
(14) Ot well coment
(15) Expansive cement
\rightarrow Grouting Anchor belts
\rightarrow onvouting machine foundation:
(15) Aligh Alumina Cement.
\rightarrow Foundahim of furmare, coke ovenn boiler setting.
(17) Concrete sleeper grade cement
\rightarrow do malse consiveta sleeper
(8) Waterproof cement
\rightarrow It is wed fir waterprorting of toervaces, winter tomke who, batharnm ehe.

* Field test of Cement
\rightarrow Open the bag of cement and take a good look at the cement.
There should not be any visible lumps
\rightarrow The coloured of the cement should be greentsh gray.
\rightarrow When hand is inserted in cementbag if should give col feeling.
\rightarrow Take a pinch of cement and feel between the finger. It should give a smooth feeling and not a greatly feeling.
* Storage of Cement
\rightarrow (1) waterproof shed with noxporthes welt \& flooring.
(3) The plinth vernal shamed well above ground bevel.
(3) gourd tavel. dross, wind oui vetistiativar.
(3) No. st aperving area is very lem.
(4) Cement bays should be kept 30 cm avery from walt.
(4)
* Physical propertives of cement
(1) Fineness \rightarrow (1) By sieve tes).
(2) By Air permeability
(2) Standand consistenuy
(3) Initial s fimal selting.
(4) Compressive strength.
(5) Suindnes test

Leerob

* Aggregate:
\rightarrow The aggregates occupy about 75% of the volume of concrete and hence their influence on various properties of concrete is considerable.
* Classification of Aggregate
(1) Classification of Aggregate Based on Unit Weight.
(1) Normal weight aggregate
(2) light weight aggregate
(3) Heavy weight Aggregate
(2) Classification based on size.
(1) Fine Aggregate \rightarrow size $\leq 4.75 \mathrm{~mm}$
\rightarrow Bulling is mare; ex-natural sand.
(2) Coarse Aggregate

$$
\rightarrow \text { size }>4.75
$$

\rightarrow Bulling is very small and neglected. \rightarrow Normal size $\rightarrow 40 \mathrm{~mm}, 20 \mathrm{~mm}, 16 \mathrm{~mm}$ and
(3) Max $\cdot \frac{12.5 \mathrm{~m} \text { m }}{}$ Size Aggrguts
(3) Classification based on shape.
(1) Rounded aggregate
(2) Irregular "
(3) Angular
(4) Flaky
(5) Elongated il
(1) Rounded aggregate
\rightarrow contains minimum voids ranging from 32 to 33%.
\rightarrow It gives better workability.
\rightarrow The interlocking between the particles is less and hence the development of bond is poor making.
\rightarrow It is unsuitable for high strength contract.
(2) Irregular Aggregate
\rightarrow voids range. 35 to 38%
\rightarrow bonding is better
\rightarrow For giving workability mure paste required.
(3) Angular Aggregate
\rightarrow voids range $38-40 \%$
\rightarrow Good bonding between aggregate pastidles. in enervate.
\rightarrow It gives high strength of concrete.
(2) Flaky aggregate
\rightarrow The aggregate whose least elimension Cthirekers gauge. is less than $3 / 5$ of its mean elimension is termed as flaky aggregate.
\rightarrow They reduce workabiing of concrete.
(5) Elongated Aggregate
\rightarrow The aggregate whose greater dimension. is greater than $9 / 5$ of its mean dimension is called elongated aggregbets.
\rightarrow They reduce workability in concrete.
(41) Classification based surface texture.

Sunture texture
\rightarrow Glassy
\rightarrow Smooth surface
\rightarrow Granular
\rightarrow Crystalline

Example
Black flint chert, slate, marble sand stone. Basalt, trachyte.

* Laboratory test of engreyate
\rightarrow Abrasion value test
\rightarrow Impact value test
\rightarrow Crushing value test
\rightarrow Flakey s Elongation.
* $\mathrm{CH}-\mathrm{O} 2$ Fresh concrete $*$.
\rightarrow Introduction.
\rightarrow Workability
\rightarrow segregation
\rightarrow Bleeding
\rightarrow Relation beth workability \& strength.
$\rightarrow \omega / c$ ratio
\rightarrow Gel/spate ratio
\rightarrow Admixture used to improve workability
\rightarrow Production of concrete
\rightarrow Joints in concrete.

Introduction
\rightarrow In previous chapter we studied the properties of different types of cement, properties of coarse and fine aggregate and quality of mixing water.
\rightarrow In this chapter we will study one more aspect for deciding the water/cement ratio ie. workability of concrete.

* Workability \rightarrow It is defined as the ease with which it can be mixed, transported and placed in position in a homogeneous stake.
* Factor affecting workability
\rightarrow water content \rightarrow Grading of aggregate.
\rightarrow Mix proportions
\rightarrow size of aggregates
\rightarrow shape of oggregutes
\rightarrow Surface texture of aggregate \rightarrow Temperature.
* Measuring of Workability.
\rightarrow The following tests ane commonly used to measure workability.
(1) Slump test
(2) Compacting factor test
(3) Flow test
(4) Vee bee consistometer test
(5) Kelly ball tent.
* Segregation: It can be defined as separating out of the ingredients of concrete mix, So that the mix is no langer in a homogeneous and stable condition.
\rightarrow It results in honey combing, decrease indensity. and ultimate loss of strength of hardened concrete.
* Types of segregation
\rightarrow The coarse aggregate seperating out from the mix, in case of dry mix.
\rightarrow The paste seperating out from the mix, in case of wet mix.
\rightarrow Water seperating out from the mix, being a material of lowest specific gravity, incas of excess water in the mix.
* Causes of segregation.
(1) Badly proportioned mix where sufficient matrix (paste) is not available to bind and contain the aggregates.
(II) Insufficient mixing of concrete with excess wetter content.
(iii) Dropping of concrete from heights as in the case of placing concrete in column.
(IV) Discharging concrete against an obstacles like reinforcing bars, formwork eke.
(v) Passing concrete along a chute, particularly with changes of direction.
* Precautions
(1) Using correctly proportioned mix
(2) Use of certain workability gents, pozzolanic materials makes the mix cohesive and greatly help in reducing segregation.
(3) The use of air-entraining agents appreciably reduces segregation.
(4) Reducing the height of crop of concrete.
(5) Concrete should not be caused to flow horizontally or discharged against an obstruction.
(6) vibration should not be used as a means of spreading a heap of concrete into a level mass over a large area.
* Bleeding: - It is defined as the separation of water or water-cement mixture from the freshly mixed concrete.
\rightarrow The main causes of bleeding
(1) Highly wet mix.
(2) Badly proportioned mix.
(3) Insufficient mixed mix.
* Remedies to bleeding.
\rightarrow Using rich mixes
\rightarrow Using finer cement or cement with low alkali content
\rightarrow Proper proportioning the mix
\rightarrow Uniform and suttivent mixing of concrete.
\rightarrow Use of finely divided pozzolanic materials create a longer path for the water to traverse and reduces bleeding.
\rightarrow Use of air entraining agents is also effecting in reducing the bleeding.
* Relation between workability and strength.
\rightarrow Workability of concrete is directly proportional to the w/c ratio, but inversly proportional to the strength of concrete.
\rightarrow As discussed earlier, 23% water is required for chemical reaction and 15% water is required to fill up the gel pores.
\rightarrow Total 38%, workability of concrete reduces. But, concrete with low w/e ratio will giver higher strength.
\rightarrow If, w/e ratio is higher, workability of concrete will be higher, but strength of concrete will be lesser. In concrete with high wile ratio, the water in excess of 38% will create undesirable capillary cavities. hence concrete becomes porous and strength of concrete is reduced.
* Water / Cement Ratio.
\rightarrow In 1918, as a result of extensive testing at the lewis Institute, university of Illinois, Duff Abrams found that a relation existed between wa ratio and concrete strength and Presented his classic low

$$
s=\frac{k_{1}}{\left(k_{2}\right)^{x}} \text { where, } \begin{aligned}
s & =\text { strength of concrete } \\
x & =\text { w/c ratio } \\
k_{1} & =14000 \mathrm{lbs} / \mathrm{sq} \cdot \mathrm{in} . \\
k_{2} & =7 .
\end{aligned}
$$

\rightarrow Abram's law, Although eastablished independently, is similar to a general rule formulated by Feret in 1896 .
\rightarrow Feret elefined the strength of concrete paste and concrete in terms of volume factions of cement, water and air. Where, $s=$ strength of cominete

$$
s=k\left(\frac{c}{c+w+a}\right)^{2}
$$

$$
c, \omega, a=\text { vol' st cement, water }
$$ and air

$$
k=\text { constant. }
$$

* Gel space ratio
\rightarrow The influence of the wee ratio on strength of concrete does not truly constitute a law as the wee ratio rule propounded by Duff Abrams, does not include many qualifications for its validity. Hence, Abrams wis ratio law can only be called a vile and not a low.
* Some of the limitations of Abrams law arc:
(i) The strength of any wee ratio depends on the degree of hydration of cement and its chemical and physical properties.
(2) The temperature of which hydration takes place.
(3) The air content of concrete in case of air-entruined concerts.
(4) change in effective woe ratio.
(5) Formation of fissures and crocks' due to bleeding and shrinkage.

$$
\text { Gellspace ratio }=\frac{\text { volume of thydrateal cement pare }}{(\sqrt{\text { gl }} \text { of hydrated cement }+ \text { Vol. Af copilany pion) })}
$$

* Admixtures used to improve workability
(1) Air entraining agents
(2) Water rectucing agents
(3) Finely divided material
* Air entraining agents
material \rightarrow Natural wood resins, egg. vinsol resin.
\rightarrow Animal and vegetable fats and oil.
\rightarrow Water solvable soups of resin acids
\rightarrow Wetting agents like alkali salts.
\rightarrow Aluminium powder, hydrogen peroxide.
$\underline{\text { Effects }} \rightarrow$ Improvement in workability.
\rightarrow Increase resistance to freezing and thawing.
\rightarrow Reduction in strength.
\rightarrow Reduction in Permeability
\rightarrow Reduces tendency of segregation and. bleeding.
\rightarrow Reduces alkali-aggregate reaction.
* Water reducing agents (plasticizers).
\rightarrow materials \rightarrow calcium chloride
\rightarrow sodium ligno -sulphonate
\rightarrow Anaminium ligno-sulphonate Amonium
* \rightarrow The use of plasticizers reduces the water/cemut ratio for the given workability which naturally increase the strength of concrete.
\rightarrow The action of plasticizer is to fluidity the mix and to improve the workability of mix.
* Finely divided material:
materials:- \rightarrow Bentonite clay
\rightarrow Fine silica
\rightarrow Diatomaceous earth
\rightarrow Fly ash
effects:
\rightarrow Improve the workability.
\rightarrow Reduce rate of bleeding.
\rightarrow Increase strength of lean concrete.
* Production of concrete
\rightarrow The various stages of manufacture of good quality concrete are:
(1) Batching or measurement of materials
(2) Mixing
(3) Transporting
(4) Placing.
(5) compacting
(5) Finishing.
(7) Tuning.
* Batching or measurement of material.
\rightarrow The proper and accurate measurement of all the materials used in the manufocturer of contract is essential to ensure uniformity of proportions and. aggregate grading in successive batches.
\rightarrow There use two methods. of batching.
(1) Volume batching
(2) Weigh batching.
* Volume batching
\rightarrow Volume batching is not a good method for proportioning the material.
\rightarrow Volume of moist sand in a loose condition weighs much less than the same volume of dry compacted sand.
\rightarrow Volume batching is normally adopted for unimportant concrete or for small jobs, even though measurement by weight is preferable wherever possible.
\rightarrow Guage boxes ane used for measuring the fine and coarse aggregates.
\rightarrow Gauge boxes ane also called farmas.
* Weigh batching: - Batching by weight is preferable to volume batching as it is more accurate and leads to more uniform proportioning and quality of concrete.
\rightarrow It does not have the uncertainities associated with bulking and the non-uniform filling of the guage boxes associated with volume batching.
\rightarrow For all important works, only weight batching should be adopted.
(2) Mixing of concrete

The main aim of mixing of concrete is to produce a homogenous, consistent and uniform coloured conoret.
\rightarrow There ane two methods of mixing concrete.
(1) Hand mixing
(2) Machine mixing.
(3) Transporting concrete.
\rightarrow The process of carrying the concrete from the place of its mixing to the place of deposition is termed as transportation of concrete.

* The requirements to be full filled during transportation of concrete.
(1) Concrete delivered at the point of placing should be uniform and of proper consistency.
(2) No segregation in the concrete.
(3) No excessive ebrying and stiffening of the concrete.
(4) The process of mixing, transporting, placing and.
compacting concrete should not take mater compacting concrete should not take mure than 90 minutes in any case.
(5) Transportation cost should be as low as possible.
* Principal methods adopted for transportation of concrete.
(a) Mortar pan (2) wheel barrow and hand cants.
(c) Truck mixer and Dumpers
(d) Crane, bucket and rope way.
(e) Belt conveyors
(8) Chute
(3) Transit mixer
(h) skip and Hoist
(-) pumps and pipeline.
* Placing of concrete

The process of depositing the concrete in its required position is termed an placing of concrete.

* Placing concrete in the following shit situations.
(1) Placing concrete with in small east h mould.

For example: Foundation concrete for a column or wal
(2) Plowing concrete within large earth mould.

For example: Road slab and airfield pavements.
(3) Placing concrete in layers within steel or timber shutter For example. mass concrete in dam construction, concrete abutements and piers. concrete raft for high-rise building.
(4) Placing concrete within normal formwork.

For example: slabs, beams, column.
(5) Placing concrete under water.

* Precaution to be taken while placing concrete.
(i) Placing concrete within small earth mould.
\rightarrow Before placing the concrete in the foundation, all the Loose earth must be removed from the bed.
\rightarrow Any root of tree passing through the foundation trench must be cut charred or tarred effectively.
\rightarrow The surface of the earth, if dry must be made wet by sprinkling water.
(2) Placing concrete within large earth mould.
\rightarrow The ground surface on which concrete is placed must be free from loose earth, pol of water and. other organic matters like grass, leaves, rootset.
(3) Placing concrete in layers within steel or timber shute \rightarrow In case of massive concrete works, concrete is laid in thick layers.
\rightarrow while placing conure in layers, it is better to leave the top of the layer rough, so that the succeeding layer can have a good bond with the previous layer.
(4) Placing concrete within normal formwork:
\rightarrow If must be checked that the reinforcement is properly tied, ploced and having appropriate cover.
\rightarrow The formwork must be examined for correct alignment and adequate rigidity to withstand the weight of concrete, impact looks during construction without deformation.
\rightarrow Any coating of the hardened mortar on the forms should be removed.
(5) Placing concrete under water.
\rightarrow different methoels
(1) Bugged concrete
(2) Bottom dump bucket
(3) Tremie Imp
(4) Grouted aggregate
(5) Concrete pump.
* Compaction of concrete.
\rightarrow Compaction is the process of moulding concrete within the forms and around embedded pasts in order to expell the entrapped air from the concrete and to obtain homogeneous dense mass.
* Methods of compaction:
(1) Hand compaction
(2) Compaction by vibration.
(3) Compaction by pressure and jolting.
(4) Compaction by spinning.
* Curing of concrete
\rightarrow It is defined as the process of keeping the concrete moist and warm enough, so that hydration of cement may continue until the desired properties are developed.
* Methods of curing
\rightarrow water curing
\rightarrow Membrane curing.
\rightarrow Applications of heat
\rightarrow calcium chloride.

CH-O3 Admixtures
\rightarrow Admixtures
\rightarrow Purposes of using Admixtures
\rightarrow Classification of Admixtures
\rightarrow Adverse effect of excess use of admixtures.
\qquad
\qquad
\qquad
\qquad
\qquad
Admixtures:- It is defined as a material other than the basic ingredients of concrete cement. aggregates and water, added to the concrete mix immecliately before or eluring mixing to modify some properties of concrete in the fresh or hanclened state.
\rightarrow The use of admixtures like accelerators, retandery, air-entraining agents, pozzolanic materials, water proofing admixtures etc. is being practiced by Indian construction industry since lory back.

* Purpose of uning Admixtures
\rightarrow To increase the strength of concrete.
\rightarrow To accelerate the initial setting of concrete.
\rightarrow To retard the initial setting of concrete.
\rightarrow To improve workability of concrete.
\rightarrow To increase durability of concrete.
\rightarrow To redince heat of hydration.
\rightarrow T0 make light weight concrete.
\rightarrow To reduce permeability of concrete.
\rightarrow To control the alcali-aggregate expansion.
\rightarrow To increase the resistance to sulphate attack.
\rightarrow To increase the bond between old and new concrete.
\rightarrow To increase the bond between concrete and steel reinforcement.
\rightarrow To reduce segregation and bleeding of concrete.
\rightarrow To produce coloured concrete or morton.
\rightarrow To control the corrosion of concrete.
* Classification of Admixtures.

As per Is:1903-1999 has covered main five types of admixtures.
(1) Accelerating admixture (Accelerators)
(2) Retandingadmixture (Retarders)
(3) Water reducing admixtures (workability admixtures)
(4) Air entraining admixtures.
(5) Super-plisticizing admixtures.
\longrightarrow The other types of admixtures ane:
\rightarrow Pozzolana admixtures.
\rightarrow Grouting admixtures.
\rightarrow Water proofing admixture.
\rightarrow Air detraining admixtures
\rightarrow Bonding admixture.
\rightarrow corrosion inhibiting admixtures
\rightarrow Gan forming admixture.
\rightarrow Colouring admixtures.
\rightarrow Allcat - aggregate expansion inhibiting admixtures.
\rightarrow Fungicidal, Germicidal. Insecticidal admixturs.
*0Accelerating Admixtures (Alceleratons)
\rightarrow Accelenators ans added to convonte the solting and handening of rencrete.
\rightarrow The most commonly uned acceltexater is colcium chlovide
(caeds). (cach).
\rightarrow when it is uned under noumal condtions, and in regular amounts 2% by weight of cement.
\rightarrow I7 reduces the initial setting time from opproxilonately a 3 to 1 hour and final setting time from approximally 6 to 2 hroum
\rightarrow At $21^{\circ} 6$ temperatures, it approximately double the Iday strength.
Aclvanting
\rightarrow Easlier removal of forms
\rightarrow Reoluchion of requined pouice of cining
\rightarrow Eunlier platement of struturve in serwices
\rightarrow Eanly finighing of swrfore.
\rightarrow offset low. Hemperature refondohion effuts olwing cold weathering senonets.
\rightarrow Qwick repoin to exisiting conineti.
(2) Rétanding Admixtures (Retasiers)
\rightarrow Retanders ane addeel to conireti to slow down the hydration of cement to delay or proling the selting of the cement in convets.
\rightarrow Retonders keep the contreti plastic and worloable for A longer time.
=purpose
\rightarrow To overcome the allelerating effect of high temperature on setting properties of concrete in hot weather concreting.
\rightarrow To delay setting of cement, when concrete is to be placed in difficult conditions.
\rightarrow When concrete is required to be transported for long distance.
\rightarrow In grouting oil wells where at a depth of about 6000 meter temperatures may be about $200^{\circ} \mathrm{C}$ and cement grout is required to be in mobile condition for about 3 to 4 hours.
material used an retunder.
\rightarrow calcium sulphate (Gypsum).
\rightarrow stanches
\rightarrow sugars
\rightarrow cellulose products.
(3) Plasticizers (water Reducing Admixtures)
\rightarrow use of plasticizers for improving workability with out using excess of water is becoming popular practice all over the world.
\rightarrow It reduces the w / c ratio for the given workotoitity which naturally increase the strength of concrete.
\rightarrow Calcium, sodium and ammonium. ligno-sulphonates are the most commonly used plasticizers.
\rightarrow They are used in the amount of 0.1% to 0.4% by weight of cement.
\rightarrow The action of plasticizers is to fluidity the mix and to improve the workability of mix.
\rightarrow The absorption of charged polymer on the cement particles creats particle to p article repulsive forces, called zeta potential.
(4) Super - Plasticizer
\rightarrow Japan was the first country to develop super-plastion in 1960 and subsequently Germany in 1970.
\rightarrow The use of super-plasticizers permit the reduction of water to the extent of 30% without reducing workability of the mix.
\rightarrow They are also called high range water reducers.
\rightarrow They use more powerful as dispersing agents.
Aelvantages
\rightarrow Very high workability can be achieved. Hence, self levelling, self compacting, flowing concrete can be produced.
\rightarrow For the same workability, it has mode possible to use ω / c ratio as low as 0.28 to obtain strength of the order of 100 MPa .
\rightarrow With low w/c ratio, it also permits a reduction of cement content.
\rightarrow The super-plasticizers produces a homogeneous, cohesive concrete generally without any tendency for segregation and bleeding.
(5) Air-Entraining Admixtures.
\rightarrow The air entrained concrete is produced by mixing a small amount of air-entraining agent or by using air-entraining cement during mixing of the concrete.
\rightarrow Air_entraining agents also modifies the properties of hardened concrete regunding strength, durability, permeability and resistance to frost action.
Air-entraining Agents
(1) Natural wood resins, egg. vinsol resin.
(2) Animal and vegetable fats and oil.
(3) Animal and vegetable fatty acids, water soluble soaps of resin acids.
(4) Aluminium powder, zinc powder, hydrogen peroxide.

Effects of air-entrainment.
\rightarrow Improvement in workability.
\rightarrow Increased resistance to freezing and throwing.
\rightarrow Reduction in strength.
\rightarrow Reduces tendency of segregation and bleeding.
\rightarrow Reduces the permeability.
\rightarrow Reduces cement content and heat of hydration,
\rightarrow Reduction in unit weight of concrete.
\rightarrow Reduces alkali-aggregate reaction.
\rightarrow Increase in resistance to chemical.
(6) Pozzolanic Admixtures
\rightarrow Pozzolans when added to concrete mixes, rather than substituted for a part of the cement, improve workability, impermeability and resistance to chemical attack.
\rightarrow The overall effect depends on the aggregate used in concrete.
\rightarrow The aggregate deficient in fine material give the best result.

Advantages

\rightarrow Improved workability with lesser amount of water.
\rightarrow Reduction in heat of hydration.
\rightarrow Increase resistance to the action of salt, sulphate or acid water.
\rightarrow Prevention of $\mathrm{Ca}(\mathrm{OH})_{2}$ leaching.
\rightarrow Reduce alkali-aggregate reaction.
\rightarrow Increase watertightness
\rightarrow Lower costs.
(7) Grouting Admixtures
\rightarrow Sometimes grout mixtures will be required to set quickly and sometime grout mixtures will have to be in fluid form over a long period.

- Accelerator.
- Retarders
- Plasticizers
- Gas forming agents
- Workability agents.
(3) Alr-Detraining Admixtires-

UBed
\rightarrow Dissipate excess air or other ganes from plantic concuets.
\rightarrow Remove a pant of the entrained dir from a conivet mixture
materiah
\rightarrow Tributyl phosphinte
\rightarrow Dibutytphbralate
\rightarrow water soluble alcohols
\rightarrow silicers
(3) Bonding Admixtures
\rightarrow When fuesh convetr is placed over an old sonizele sunfuce, the fresh contrets shrinks while setting which makes the netu concrek pull ouny from the atd convel sunfate.
\rightarrow The commionly used bonding admixtures ane made from natural rubber, synthetic rubleer or from any erganic polymers.
(1) Water proofing Admixhures)
\rightarrow The leaknge of ropts, bathrisnm, forlets, walls, kitcheny water fanks, banemente efe is still a headoche for civil engineer:
\rightarrow Water previfiny depends upsis the qualisy of matesiuds dunability of moterials, workmunship, environ mewho.
\rightarrow Water protfing aolmixiura may be obtaincel in pouder pante or tiquid form.
\Rightarrow Theve ane two typer materials availabls namely. porefiling and iwher repelient materials.

 of handened eonevetre plays on impDTCl it rofe
 Fo convrlym that the contret wisely sill sitite koas develoged deniveed strangth.
 enn)eveffor andl handlent connmot is help full mossuring
 strength and durability of contrete
$h_{\text {w }}$ Jene d Cop. LrgL

* Pumpesse of feshing handened concrete
 dewelbopeel denired strength.
$\rightarrow I_{10}$ conhrbl the quality of con contritp
\rightarrow Compresjoit sM shen $3^{\text {th }}$ hert Bives Compressive sher YK of conirete.
 SMuctax coll derign n.
 $\operatorname{bon} A$ shtryint tese.

\rightarrow Due to shinnkoge, torrosion of reinforrement,

 in) metiossaty.
* Venious tests for hindered concrete.
(1) Compression lest.
(2) Tensile strength teat-
- split cylinder teat
- Moclulus of rupture test
(3) Bond strength test.
* Factors affecting strength of concrete.
(1) Shape and size of specimen.
(4) End condition of specimen and capping.
(3) Rate of application of Load.
(4) Height/ Diameter ratio
(5) Moisture condition during test

6) Langest size of aggregate
(7) Temperature of the specimen.

* Crecp
\rightarrow The increane of strain in conorete with teme under sustaned (stable) stress is termed ao creepp
\rightarrow It can bc delined an the elantic ond lang-term deformation of conivite under a continuous tred.

\rightarrow inenesally, o lang-Itrm deformatient of rfoniecth under a contin uguan loed.
\rightarrow Gencrally a leng tevm presure changes the shape of cancrete stoucture and the defermation ocears alring the divertion of the applied troel.
\rightarrow When the continupus lrod in remeved, the strain is dreseraned inmediately.
\rightarrow The amount of the decreaned stavin wo nemal to the elantic stowin of the given age.
\rightarrow This quirk recovery os then followeal by a continupus devrave in stiain, known to crepep recovery that in a pant of tatal creep strain sufleuel by the cancret.
* creep coetfinent

The ratio of the ultimate creep strain to the elastic stain of the age of leveling is termed as creep coefficient.

* Factors affecting creep of concrete.
(1) water-cement Ration
\rightarrow The rate of cree is increased with increasing water-cement ratios
(2) Humidity
\rightarrow It in influenced by humidity and drying condition of the atmosphere.
(3) Age of convect:
\rightarrow The rate of creep ropidly durensen with time. The time taken by a convert shucture to attained creep is 5 years.
(4) Aggregate:-
\rightarrow Aggregates with moisture movement and the elastic moctulus cause a large amount of creep.
\rightarrow The rate of creep generally decreases with the increanc of the size of aggregate.
(5) Admixtures
\rightarrow Some admixtures (mainly accelerators) are also responsible for causing creep in concrete.
* Effrecks of creop
\rightarrow In reinfonced concuets brams, cyerp increan fo the deflection with time and mivy be a critical considerction in derign.
\rightarrow In roinforied conivite columnt, tocep reoults in a grodual transfer ef loal from the consmete to the rainforemment.
\rightarrow In statically indeterminata structures, creep may relieve shess concentixations induceal by shrinkage., temperature changes or selflement of supperts
\rightarrow In mass consuct, critp in itself may be a cowne do crocking when restrained concrets moss undergoen a tyele of temperature chinge due to the developedent of the heat of hydration and subsequent cooling.
\rightarrow In eane of prestressed coneret, creep reeluces prestress and provision is mode for the loss of prestress in the denign of such struetures.
* Suality Control : In the doaign of reinforced conerets, the shength of conevets is specifited by the derigneer is
\rightarrow The vaniation in quality of contret depends upon the several freters.
x variation in the qualily of cansthaenk matevials.
, Vamiation in the mix prisportions due to batching process-
* Voriation in the quality of batehing cinct mixary quipmen
* The quality of averoll woxtemanship supervision at si
\rightarrow The main aim of quality control is to reduce the vainations in quality of convect to fulfil the needo of serviceability, 3 a/dy and durabilizy.
if stages in quality control
\rightarrow The quality content is excevciscel during the following thine stages of construction.
(1) Preparatory to construction
(1) During construction.
(3) After construction
(1) Preparatory to construction:-

During preparatory stage the quality control involves:
(i) Specification of concrete quality
(ii) strength and workability requirements
(il) Intial and detailed tenting of materials for the approval of sources
(iv) obtaining mix denign data for controlled concrete from a central laboratory.
(9) Aggregate grading and absorption.
(vi) Mix proportion and w/e ration
(vii) setting up a field laboratory for controlled. concrete.
(vii) Inspection for approval of batching an d. mixing focilition.
(3) Duning tanstruetith
\rightarrow Duning construction the exercise involven.
(11) Teating of materiats ifer concrecte-teats and theris frequenty :
(ii) rontonls and idjuitrimets for aggregate grading, misture content bulving sondete.
(iii) Esetrol and adjustments for meintaining renstant worksibitity and दkength.
(iv) control on concretiry opeations-mixing, fransporting plaung, compoting, fimstings ef
(3) After ronstruction:
(4) conlvolled cuning for specified perivel.
(ii) Interpietation of cube stringts results and the assessments of concrete.
(iii) Nan - deatouctive fosting :

* Advantages of Einality conhol.
\rightarrow Locally avalable mateviols and mesources one useat ofter troting their characteristion, results in the redurtion in the material cost.
\rightarrow In the obsence. of quality imviral at the site the designer is tempted to overdsinign, so as to minimize the risks Thin odds to the overall cost.
\rightarrow cheak at every stages of the production of conarle and rectification anet of the foults at the night time expedities completion and reduies delay in canstruditn.
\rightarrow Quality control reduces the maintenanie costs.
\rightarrow It provides leng term benctits like solety and servileability.

7. Common Ferminologier
(1) Meen strength (x.)

$$
\begin{aligned}
& \bar{x}=\frac{\sum x_{1}}{n} \quad \text { where, } \\
& \vec{x}=\text { mean strength } \\
& \sum x_{1}=\text { sum of stringth of all eubes } \\
& n=\text { number ot rubes }
\end{aligned}
$$

(2) Variance $=x_{1}-\bar{x}$
\rightarrow Thin is the measitre of vaciability or difference betn any single absorved dotn from the mean strength.
(3) Ronge : The range is the stifferfice between the inggeot and the smallest valuen in d set of obsexvations.
(6) shatavel deviahinn csil!

$$
\begin{aligned}
& s=\sqrt{\frac{\sum(x+5)^{2}}{n-1}} \quad \begin{array}{r}
\text { whe, } s=\text { shanderd denition } \\
x_{i}, \text { rpioviticuler value of }
\end{array} \\
& \text { nestrvalion. } \\
& x=\text { minan stomgh } \\
& n=n+n t \text { cabex. }
\end{aligned}
$$

IN - SITU STKENGTII nSEESS MENT

\rightarrow The poupose oft ins situ teoting of cancreti ine:
(i) Ascesment if shawtural integrily following material deleriaxation by overtecid, fre, blaat, foligue, ealtiguake efe
(2) Poppesed extension of shwikue
(3) change of wsoge of shuclure.
(3) Acieptatility if structore for purchase or ins usarice.
(5) Manitasing long-feam shanges in material praperties.
(6) Assessment of ravoe and extent at deteriaration for repair

Forsim molhats di feating]
 (i) sunfoic handocss tont (3) Retirend Rammer fert (3) Ulisnsomig pidee wilacily feat (a) Rahrative melkodos (9) Nisikar trietands
(3) Neagnetios meloater
(w) fietorcet methuds

* Rebound -Hammer trot
\rightarrow Theory:- The test is taxed on the principle that the Reboural of an elastic mass depensls on the Handiness of the surfore upon which in impinge, and in this care will provide information about a surface layer of the rencrets.
\rightarrow The reowls give a measure of the relative handiness of the corresponding texted zone

Procedure: \rightarrow The rearing is very sensitive to local variations of concrete especially aggregate particles near to the surface.
\rightarrow It is recommended to toke several reading of each test locations by marking grids and to find their average mather of testing: - Rebound hammer will be used on the concrete surface at five different positions for assessment of surface handress and strength estimation. At site depending on the avalability of exposed surface of cannets.
(9) Hourzental
(b) Vertically upuaquda
(c) Verhcelly downounds
(d) Indiried upazanila
(e) Inclineal menterviuarida

* Factors indluencing the frot result.
(\%) Mix charatevistics like cement type, cement content.
(3) Sinoothness of the surfoce under teat.
(3) Type at coarse aggregate
(4) Size, shape and rigidity of the specimen.
(5) Age of cenevet
(6) Mosture condition of the concrete.
(7) Canbonstion of corivet surtaie
(8) Type of mould.
* (1) evability: - Dourability in defined an its ebility to resist wenthering cirtion chemical attack. abrasion of any other process eff deterionation, that is duvable conivet will vetain its origixal form, quality, and serviseribilily when exposed toits envivonmeuh

1) Factors affecting Dunabilily?

The foctors affecting durability ane broadly divided into two groups, namely external follows and internal factors.

External faitor
\rightarrow Physical, chemical or mechanical
\rightarrow Environmental, such as extreme temperatures. abrasion and
\rightarrow Attack by natural or industrial liquids and gases.

Int canal factors.
\rightarrow Permeability of concrete.
\rightarrow Alkali aggregate reaction
\rightarrow Volume changes due to difference in thermal propestive, of the aggregate and cement paste.

* Requirement for Durability.
\rightarrow Exposure conditions
\rightarrow Requirement of concrete cover
\rightarrow shape \rightarrow size of member
\rightarrow Type and quality of constituent material.
\rightarrow compaction finishing and curing of concrete.
* Permeability of concrete:-

It is defined as the property that governs the rate at flow of a flail inter a porous sediel (concrete.).

* Empertanie of permeability,
\rightarrow In reinforced concrets, ingres it water and air will result in corrosion of steel leading to exponsion, cracking and disruption of concrete.
\rightarrow The penetration of deleterious materials in solution may adversely affect the durability of concrete $\mathrm{g} . \mathrm{Co}(\mathrm{OH})_{2}$ leaches out and aggressive tiquiels attack of the coneneta
\rightarrow If concrests becomes saturated with water due to permeability, it is move vulnerable to frost option.
\rightarrow The permentitity is very important in case of diatived retaining structures the water tor estes perse s tong and dams whore water- tightness is necessary.
*) Foctase affecting provmmability.
\rightarrow Water/cement ratio
\rightarrow Properties of cement
\rightarrow Aggregate.
\rightarrow Absorption and homogeneity of coniveta
\rightarrow curing
\rightarrow Use of actmishures
\rightarrow Age of conenita

